首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65452篇
  免费   634篇
  国内免费   1127篇
测绘学   2210篇
大气科学   4916篇
地球物理   12215篇
地质学   27573篇
海洋学   4374篇
天文学   10587篇
综合类   2215篇
自然地理   3123篇
  2021年   162篇
  2020年   200篇
  2019年   211篇
  2018年   7043篇
  2017年   6328篇
  2016年   4149篇
  2015年   716篇
  2014年   694篇
  2013年   1234篇
  2012年   2450篇
  2011年   5463篇
  2010年   4738篇
  2009年   5251篇
  2008年   4254篇
  2007年   5249篇
  2006年   1070篇
  2005年   1474篇
  2004年   1521篇
  2003年   1533篇
  2002年   1164篇
  2001年   750篇
  2000年   712篇
  1999年   584篇
  1998年   597篇
  1997年   576篇
  1996年   440篇
  1995年   419篇
  1994年   380篇
  1993年   335篇
  1992年   309篇
  1991年   273篇
  1990年   303篇
  1989年   281篇
  1988年   234篇
  1987年   311篇
  1986年   257篇
  1985年   346篇
  1984年   383篇
  1983年   371篇
  1982年   335篇
  1981年   330篇
  1980年   334篇
  1979年   282篇
  1978年   311篇
  1977年   263篇
  1976年   273篇
  1975年   275篇
  1974年   234篇
  1973年   238篇
  1972年   158篇
排序方式: 共有10000条查询结果,搜索用时 390 毫秒
991.
992.
The evolutionary status of hydrogen-poor stars is analyzed.Photoelectric observations of six objects are reported as a first step of a long-term project devoted to search for variability of a large sample of hydrogen-poor stars.The observed stars show phenomena of microvariability with an amplitude of the order of 0m. 1 or less.Two extreme helium stars have been examined: a period in the range of 0d.162-0d.164 has been found for BD+ 1002179, andP=0d.1079962 for BD+1303324.The mass-losing O subdwarf (sdO) BD+370 443 presents short-term fluctuations with a time-scale of several minutes and long-term variations on a scale of months. The standard sdO BD+750325 is probably non-variable, although light variations of very small amplitude (m0.03) with a time-scale of about 1 hr might be present. The high gravity sdO BD+2504655, which is very close to the white dwarf stage, also presents variability on a time-scale of about 13 minutes, and might be an analog of the recently discovered pulsating sdO, or hot white dwarf, PG 1159-035.The variability of the intermediate helium star HD 37776 is finally confirmed.  相似文献   
993.
The number of equivalence classes of central configurations (abbr. c.c.) in the planar 4-body problem with three arbitrary and a fourth small mass is investigated. These c.c. are derived according to their generic origin in the 3-body problem. It is shown that each 3-body collinear c.c. generates exactly 2 non-collinear c.c. (besides 4 collinear ones) of 4 bodies with smallm 40; and that any 3-body equilateral triangle c.c. generates exactly 8 or 9 or 10 (depending onm 1,m 2,m 3) planar 4-body c.c. withm 4=0. Further, every one of these c.c. can be continued uniquely to sufficiently smallm 4>0 except when there are just 9; then exactly one of them is degenerate, and we conjecture that it is not continuable tom 4>0.Paper presented at the 1981 Oberwolfach Conference on Mathematical Methods in Celestial Mechanics.  相似文献   
994.
The determination of a representative refractive index for the wave path is the main limitation of the attainable accuracy in electronic distance measurement. To overcome this limitation the length ratio method was initially proposed and later developed into the local scale parameter (LSP) method. In this paper, the mathematical model of the LSP method is derived for electro-optical distance measurement from first principles based on the physics of the atmospheric boundary layer. The model does not rely on standard atmospheres. It is shown that atmospheric temperatures and pressures must be observed at instrument stations but not at reflector stations. Appropriate LSP field procedures and the results of some field experiments are summarized. The method consistently produces accuracies of better than ±1 ppm. Use of the method is recommended for high precision (trilateration) networks, which need to be measured repeatedly and where absolute scale is not relevant.  相似文献   
995.
The pentacyclic triterpene 17 beta(H),21 beta(H)-hop-22(29)-ene (diploptene) occurs in sediments throughout the Columbia River drainage basin and off the southern coast of Washington state in concentrations comparable to long-chain plantwax n-alkanes. The same relationship is evident for diploptene and long-chain n-alkanes in soils from the Willamette Valley. Microorganisms indigenous to soils and soil erosion are indicated as the biological source and physical process, respectively, for diploptene in coastal sediments. Similarity between the stable carbon isotopic composition (delta 13CPDB) of diploptene isolated from soil in the Willamette Valley (-31.2 +/- 0.3%) and from sediments deposited throughout the Washington coastal environment (-31.2 +/- 0.5%) supports this argument. Values of delta for diploptene in river sediments are variable and 8-17% lighter, indicating that an additional biological source such as methane-oxidizing bacteria makes a significant contribution to the diploptene record in river sediments. Selective biodegradation resulting from a difference in the physicochemical association within eroded particles can explain the absence of the more-13C-depleted form of diploptene in Washington coastal sediments, but this mechanism remains unproven.  相似文献   
996.
A cool period from about 11000 to 10 500 BP (11 to 10.5 ka) is recognized in pollen records from the southern Great Lakes area by the return of Picea and Abies dominance and by the persistence of herbs. The area of cooling appears centred on the Upper Great Lakes. A high-resolution record (ca. 9 mm/y) from a borehole in eastern Lake Erie reveals, in the same time interval, this pollen anomaly, isotope evidence of meltwater presence (a — 3 per mil shift in 18O and a +1.1 per mil shift in 13C), increased sand, and reduced detrital calcite content, all suggesting concurrent cooling of Lake Erie. The onset of cooling is mainly attributed to the effect of enhanced meltwater inflow on the relatively large upstream Main Lake Algonquin during the first eastward discharge of glacial Lake Agassiz. Termination of the cooling coincides with drainage of Lake Algonquin, and is attributed to loss of its cooling effectiveness associated with a substantial reduction in its surface area. It is hypothesized that the cold extra inflow effectively prolonged the seasonal presence of lake ice and the period of spring overturn in Lake Algonquin. The deep mixing would have greatly increased the thermal conductive capacity of this extensive lake, causing suppression of summer surface lakewater temperatures and reduction of onshore growing-degree days. Alternatively, a rapid flow of meltwater, buoyed on sediment-charged (denser) lakewater, may have kept the lake surface cold in summer. Other factors such as wind-shifted pollen deposition and possible effects from the Younger Dryas North Atlantic cooling could have contributed to the Great Lakes climatic reversal, but further studies are needed to resolve their relative significance.Contribution to Climo Locarno — Past and Present Climate Dynamics; Conference September 1990, Swiss Academy of Sciences — National Climate ProgramGeological Survey of Canada Contribution 58 890  相似文献   
997.
An 40Ar/39Ar thermochronological investigation of upper greenschist to granulite facies gneiss, amphibolite and marble was conducted in the Central Metasedimentary Belt (CMB), Ontario, to constrain its cooling history. Incremental 40Ar/39Ar release spectra indicate that substantial differential unroofing occurred in the CMB between 1000 and 600 Ma. A consistent pattern of significantly older hornblende and phlogopite 40Ar/3Ar cooling ages on the southeast sides of major northeast striking shear zones is interpreted to reflect late displacement due to extensional deformation. Variations in hornblende 40Ar/39Ar age plateaus exceeding 200 Ma occur over distances less than 50 km with major age discontinuities occurring across the Robertson Lake shear zone and the Sharbot Lake mylonite zone which separate the Sharbot Lake terrane from the Elzevir and Frontenac terranes. Extensional displacements of up to 14 km are inferred between the Frontenac and Elzevir terranes of the CMB. No evidence for significant post argon-closure vertical displacement is indicated in the vicinity of the Perth Road mylonite within the Frontenac terrane. Variations of nearly 100 Ma in phlogopite 40Ar/39Ar plateau ages occur in undeformed marble on either side of the Bancroft Shear Zone. Phlogopites from sheared and mylonitized marble within the shear zone yield 40Ar/39Ar diffusional loss profiles, but have older geologically meaningless ages thought to reflect incorporation of excess argon. By 900 Ma, southeast directed extension was occurring throughout the CMB, possibly initiated along previous zones of compressional shearing. An easterly migration of active zones of extension is inferred, possibly related to an earlier, overall easterly migration of active zones of regional thrusting and easterly migration of an ancient subduction zone. The duration of extensional shearing is not well constrained, but must have ceased before 600 Ma as required by the deposition of overlying undeformed Cambrian and/or Ordovician sedimentary rocks.Contribution No. 481 from the Mineralogical Laboratory, University of Michigan  相似文献   
998.
The Juqui circular intrusion, which is Cretaceous in age (130–135Ma), crops out in the Precambrian gneissic basement in Brazilover an area of 14 km2. It consists of olivine clinopyroxen-itecumulates (with minor olivine gabbros) in the northeastern sector(74 vol.%), whereas ijolites-melteigites-urtites (4%) and nephelinesyenites with minor essexites and syenodiorites (21%) outlinesubannular concentric patterns with an Mg-carbonatite core (1%), in the southwestern part of the complex. Petrographical, bulk rock, and mineral compositional trendsindicate that the origin of the complex can be largely accountedfor by shallow-level fractional crystallization of a carbonatedbasanitic parental magma. Such a magma was generated deep inthe subcontinental lithosphere by low-degree partial meltingof a garnet-phlogopite peridotite source. Mass-balance calculations in agreement with field volume estimatespermit definition of several fractionation stages of the magmaticevolution under nearly closed-system conditions, with inwarddevelopment of zonally arranged side-wall cumulates. These stagesinvolved: (1) fractionation from basanite to essexite magma(liquid fraction F = 33–5%) by crystallization of olivineclinopyroxenite plus minor olivine alkali gabbro cumulates;(2) derivation of the least differentiated mafic nepheline syenite(F = 5–5 %) from essexitic magma by subtraction of a syenodioriteassemblage; (3) exsolution of a carbonatite liquid (5%) froma CO2-enriched mafic nepheline syenite magma, which also underwentcontinuous fractionation giving rise to ijolite-melteigite-urtitecumulates. The proportion of cumulus clinopyroxene and biotiteand intercumulus nepheline and alkali feldspar in these lastrocks, as well as the absence of alkalis in carbonatite, maybe attributed, at least in part, to loss of alkali-rich hydrousfluids released during and after the unmixing formation of thetwo conjugate liquids. The KD values determined for Mg-carbonatite/nepheline syeniteare lower (1–4–2–9) for light rare earth elements(LREE) than for REE from Eu to Yb (4–6–7–8),in contrast to recent experimental results (Hamilton et al.,1989). A possible explanation is that Juquia Mg-carbonatiterepresents an alreadydifferentiated magma, which underwent extensivefractionation of LREE-enriched calcite. In this way, the highvariability of K0 REE patterns observed in several alkaline-carbonatitecomplexes can also be accounted for. The remarkably constant initial 87Sr/86Sr ratios (mostly between0–7052 and 0–7057) support the interpretation ofthe intrusion as having been generated by fractrional crystallizationand liquid immiscibility from a common parental magma. Iligherisotopic ratios (0–7060–0–7078), found mainlyin dykes and in the border facies of the intrusion, may be dueto contamination by the gecissic basement.  相似文献   
999.
The attachment energies, the slice energies and the specific surface energies can be calculated in an electrostatic point charge model using the formula derived by Madelung for the potential introduced by an infinite row of equally spaced point charges. Power series are given for the Hankel function iH (0) (1) (iy) and Ψ(x)=d ln x!/dx. The logarithmic expression in the Madelung formula converges rapidly when applying a power series, which combines equally charged cations and anions. Besides the specific surface energy (γ hkl), the slice energy (E s hkl ) and the attachment energy (E a hkl ) can be considered as special categories of surface energies as they depend on surface configurations as well. The specific surface energy γ is the energy per unit area of surface needed to split the crystal parallel to a face (hkl). The attachment energy (E a) is the energy released per mole, when a new slice of thickness d hkl crystallizes on an already existing crystal face (hkl). The growth rate of the crystal face (hkl) is a function of its attachment energy. The slice energy (E s) is the energy released per mole, when a new slice d hkl is formed from the vapour neglecting the influence of edge energies. The lattice energy (E c) which is the energy released per mole of a crystal crystallizing from the vapour, is given by the following relation: E c=E a+E s.  相似文献   
1000.
The attachment energies, the slice energies and the specific surface energies can be calculated in an electrostatic point charge model using the formula derived by Madelung for the potential introduced by an infinite row of equally spaced point charges. Power series are given for the Hankel function iH (0) (1) (iy) and (x)=d ln x!/dx. The logarithmic expression in the Madelung formula converges rapidly when applying a power series, which combines equally charged cations and anions. Besides the specific surface energy ( hkl), the slice energy (E s hkl ) and the attachment energy (E a hkl ) can be considered as special categories of surface energies as they depend on surface configurations as well. The specific surface energy is the energy per unit area of surface needed to split the crystal parallel to a face (hkl). The attachment energy (E a) is the energy released per mole, when a new slice of thickness d hkl crystallizes on an already existing crystal face (hkl). The growth rate of the crystal face (hkl) is a function of its attachment energy. The slice energy (E s) is the energy released per mole, when a new slice d hkl is formed from the vapour neglecting the influence of edge energies. The lattice energy (E c) which is the energy released per mole of a crystal crystallizing from the vapour, is given by the following relation: E c=E a+E s.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号