首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   633篇
  免费   20篇
  国内免费   2篇
测绘学   5篇
大气科学   39篇
地球物理   146篇
地质学   204篇
海洋学   62篇
天文学   137篇
综合类   1篇
自然地理   61篇
  2022年   4篇
  2021年   15篇
  2020年   12篇
  2019年   11篇
  2018年   19篇
  2017年   15篇
  2016年   20篇
  2015年   10篇
  2014年   22篇
  2013年   35篇
  2012年   21篇
  2011年   34篇
  2010年   16篇
  2009年   39篇
  2008年   21篇
  2007年   31篇
  2006年   24篇
  2005年   20篇
  2004年   10篇
  2003年   24篇
  2002年   20篇
  2001年   20篇
  2000年   13篇
  1999年   9篇
  1998年   10篇
  1997年   17篇
  1996年   8篇
  1995年   6篇
  1994年   4篇
  1993年   6篇
  1992年   5篇
  1991年   7篇
  1990年   11篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   10篇
  1984年   9篇
  1983年   7篇
  1982年   16篇
  1981年   9篇
  1979年   8篇
  1978年   5篇
  1977年   3篇
  1976年   4篇
  1975年   4篇
  1974年   5篇
  1973年   7篇
  1971年   2篇
排序方式: 共有655条查询结果,搜索用时 15 毫秒
511.
Trade-wind cumuli constitute the cloud type with the highest frequency of occurrence on Earth, and it has been shown that their sensitivity to changing environmental conditions will critically influence the magnitude and pace of future global warming. Research over the last decade has pointed out the importance of the interplay between clouds, convection and circulation in controling this sensitivity. Numerical models represent this interplay in diverse ways, which translates into different responses of trade-cumuli to climate perturbations. Climate models predict that the area covered by shallow cumuli at cloud base is very sensitive to changes in environmental conditions, while process models suggest the opposite. To understand and resolve this contradiction, we propose to organize a field campaign aimed at quantifying the physical properties of trade-cumuli (e.g., cloud fraction and water content) as a function of the large-scale environment. Beyond a better understanding of clouds-circulation coupling processes, the campaign will provide a reference data set that may be used as a benchmark for advancing the modelling and the satellite remote sensing of clouds and circulation. It will also be an opportunity for complementary investigations such as evaluating model convective parameterizations or studying the role of ocean mesoscale eddies in air–sea interactions and convective organization.  相似文献   
512.
Thirteen years of GRACE data provide an excellent picture of the current mass changes of Greenland and Antarctica, with mass loss in the GRACE period 2002–2015 amounting to 265 ± 25 GT/year for Greenland (including peripheral ice caps), and 95 ± 50 GT/year for Antarctica, corresponding to 0.72 and 0.26 mm/year average global sea level change. A significant acceleration in mass loss rate is found, especially for Antarctica, while Greenland mass loss, after a corresponding acceleration period, and a record mass loss in the summer of 2012, has seen a slight decrease in short-term mass loss trend. The yearly mass balance estimates, based on point mass inversion methods, have relatively large errors, both due to uncertainties in the glacial isostatic adjustment processes, especially for Antarctica, leakage from unmodelled ocean mass changes, and (for Greenland) difficulties in separating mass signals from the Greenland ice sheet and the adjacent Canadian ice caps. The limited resolution of GRACE affects the uncertainty of total mass loss to a smaller degree; we illustrate the “real” sources of mass changes by including satellite altimetry elevation change results in a joint inversion with GRACE, showing that mass change occurs primarily associated with major outlet glaciers, as well as a narrow coastal band. For Antarctica, the primary changes are associated with the major outlet glaciers in West Antarctica (Pine Island and Thwaites Glacier systems), as well as on the Antarctic Peninsula, where major glacier accelerations have been observed after the 2002 collapse of the Larsen B Ice Shelf.  相似文献   
513.
Innovation and understanding hydrological processes are intimately linked. Existing research has demonstrated the role of technological, societal, and political drivers in shaping and delivering new understandings in hydrological processes. In this paper we pose three research questions to explore how innovation can further our understanding of hydrological processes, if working towards the sustainable development goals (SDGs) provides a helpful focus, and whether specific mechanisms can be used to facilitate innovation and research into hydrological processes. First, we examine key aspects of innovation and explore innovation in the context of water security. We then present a series of innovation projects to determine their effectiveness in delivering innovation in managing hydrological processes, but also their contribution to scientific understanding. Our research suggests that product and process innovation were more closely related to increasing scientific understanding of hydrological processes than other forms of innovation. The NE Water Hub demonstrated that the design of the innovation ecosystem was crucial to its success and provides a model to integrate innovation and research more widely to further scientific understanding and deliver behaviour change to address the SDGs.  相似文献   
514.
515.
516.
California is home to some of the worst air quality in the nation and ninety percent of the state’s population lives in areas that are out of attainment with at least one of the National Ambient Air Quality Standards. Increasing temperatures associated with climate change will make meeting air quality standards more difficult. Under a changing climate, additional emission reductions will be needed to achieve clean air standards. These additional emission reductions and associated costs are called the “climate penalty.” Air quality planning is the process of assessing the emission reductions needed to meet air quality standards and outlining the programs and policies that will be implemented to achieve these emission reductions. This paper reviews the challenges that a changing climate will pose for air quality planning in California and identifies opportunities for adaptation. While state air quality regulators in California are taking enormous strides to address global warming, less work is happening at the regional, air district level. Air districts are the agencies responsible for developing air quality improvement plans. An important first step for regional air quality regulators will be to quantify the climate penalty and understand their region’s vulnerability to climate change. Limitations in regulatory authority could impede measures to improve preparedness. Regional agencies will likely need to look to state and federal agencies for additional emission reductions.  相似文献   
517.
Loss of life and property caused by landslides triggered by extreme rainfall events demonstrates the need for landslide-hazard assessment in developing countries where recovery from such events often exceeds the country's resources. Mapping landslide hazards in developing countries where the need for landslide-hazard mitigation is great but the resources are few is a challenging, but not intractable problem. The minimum requirements for constructing a physically based landslide-hazard map from a landslide-triggering storm, using the simple methods we discuss, are: (1) an accurate mapped landslide inventory, (2) a slope map derived from a digital elevation model (DEM) or topographic map, and (3) material strength properties of the slopes involved. Provided that the landslide distribution from a triggering event can be documented and mapped, it is often possible to glean enough topographic and geologic information from existing databases to produce a reliable map that depicts landslide hazards from an extreme event. Most areas of the world have enough topographic information to provide digital elevation models from which to construct slope maps. In the likely event that engineering properties of slope materials are not available, reasonable estimates can be made with detailed field examination by engineering geologists or geotechnical engineers. Resulting landslide hazard maps can be used as tools to guide relocation and redevelopment, or, more likely, temporary relocation efforts during severe storm events such as hurricanes/typhoons to minimize loss of life and property. We illustrate these methods in two case studies of lethal landslides in developing countries: Tegucigalpa, Honduras (during Hurricane Mitch in 1998) and the Chuuk Islands, Micronesia (during Typhoon Chata'an in 2002).  相似文献   
518.
The mineralisation potential of Palaeoproterozoic strata from the central Gawler Craton, South Australia, is poorly known. This study defines the timing of Zn-rich skarn formation within Palaeoproterozoic calcsilicate and highlights this as a new mineralisation style for the Gawler Craton. Sulphides within the garnet–diopside skarn in the No. 17 Bore Prospect are predominantly in the form of sphalerite, associated with galena, minor chalcopyrite, pyrrhotite and pyrite. Sulphide is present in disseminated form and as a coarse-grained sulphide within a sericite-rich cavity-fill. Mineralisation is inferred to have formed at 1710 ± 16 Ma through a Sm–Nd isochron from garnet and diopside aliquots. A weakly mineralised and altered granite immediately below the calcsilicate skarn crystallised at 1729 ± 13 Ma (LA-ICPMS U–Pb zircon), within error of the skarn mineralisation. The skarn is interpreted to have formed through the initiation of fluid circulation as a result of high-level granite emplacement within the Palaeoproterozoic strata. Exploration for skarn Zn–Pb deposits such as the No. 17 Bore Prospect is assisted by their geophysical properties.  相似文献   
519.
520.
The ∼260 Ma Baimazhai mafic–ultramafic intrusion is considered to be part of the Emeishan large igneous province and consists of orthopyroxenite surrounded by websterite and gabbro. The intrusion is variably mineralized with a massive sulfide ore body (∼20 vol.%) in the core of the intrusion. Silicate rocks have Ni/Cu ratios ranging from 0.3 to 46 with majority less than 7 and are rich in LREE relative to HREE and show Nb and Ta anomalies in primitive mantle-normalized trace element patterns, with low Nb/Th (1.0–4.5) and Nb/La (0.3–1.0) ratios. Their ɛ Nd(t) values range from −3.3 to −8.4. Uniform Pd/Pt (0.7–3.5) and Cu/Pd (100,000–400,000) ratios throughout the intrusion indicate that all the sulfides in the rocks were formed in a single sulfide-saturation event. Modeling suggests that the Baimazhai rocks were formed when an Mg-rich magma became crustally contaminated in a deep-seated staging chamber. Crustal contamination (up to ∼35%) drove the magma to S-saturation and forced orthopyroxene (Opx) onto the liquidus. The crystal-bearing magma forced out of the staging chamber was migrated by flow differentiation and consequently, the denser sulfide melt and the Opx crystals became centrally disposed in the flowing magma to form the Baimazhai intrusion.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号