首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   438篇
  免费   12篇
  国内免费   4篇
测绘学   15篇
大气科学   29篇
地球物理   80篇
地质学   213篇
海洋学   47篇
天文学   40篇
自然地理   30篇
  2023年   3篇
  2022年   5篇
  2021年   5篇
  2020年   5篇
  2019年   6篇
  2018年   8篇
  2016年   17篇
  2015年   11篇
  2014年   22篇
  2013年   25篇
  2012年   23篇
  2011年   15篇
  2010年   21篇
  2009年   15篇
  2008年   15篇
  2007年   8篇
  2006年   18篇
  2005年   18篇
  2004年   9篇
  2003年   15篇
  2002年   9篇
  2001年   11篇
  2000年   8篇
  1999年   5篇
  1998年   8篇
  1997年   4篇
  1995年   4篇
  1993年   3篇
  1992年   8篇
  1991年   7篇
  1990年   7篇
  1988年   3篇
  1987年   6篇
  1986年   4篇
  1985年   9篇
  1984年   5篇
  1983年   6篇
  1982年   9篇
  1981年   4篇
  1980年   5篇
  1979年   6篇
  1978年   8篇
  1977年   3篇
  1976年   4篇
  1975年   6篇
  1973年   10篇
  1972年   3篇
  1971年   4篇
  1966年   2篇
  1955年   3篇
排序方式: 共有454条查询结果,搜索用时 62 毫秒
91.
92.
The efficiency of serpentinite as an alternative alkalinity generating material for the passive treatment of acid mine drainage (AMD) was assessed in the laboratory. Three series of batch experiments were designed for the passive treatment of a low pH (1.6) AMD synthetic solution containing 2,500 ppm Fe2+, 6,600 ppm SO42–, 10.5 ppm Al, 15 ppm Ni, and traces of Cr, Mn and Cu. The influencing factors studied were: the effect of water/rock ratio, residence time, type of the alkalinity generating material (dolomite, magnesite, marble, serpentinite), and nature of the system (open vs. closed cells). The variations in solution chemistry observed in the open cells indicate that a lower water/rock ratio (0.33 ml/g) was the most efficient for metals removal. The optimal residence time in open cells was 24 h to reach the higher pH values. In the closed cells laboratory setup, synthetic AMD was placed in contact with the various alkaline materials for three different contact times (24, 48, 72 h). The optimal pH was reached after 48 h and did not change appreciably for longer contact time, and the best results for metal removals were obtained with marble and serpentinite. Single treatment efficiency was compared with a successive treatment approach. The most promising results were obtained with a five step treatment: (1) pre-treatment in a closed cell using serpentinite, (2) aeration and settling, (3) treatment in an open cell using marble, (4) final aeration and settling, and (5) filtration with a coarse silica sand. With this configuration, the final pH was 6.5 and pronounced metals depletion was achieved (100% for Al, 99.95% for Fe, 85.7% for Ni).  相似文献   
93.
94.
This paper aims to simulate the kinematic evolution of a regional transect crossing the Northern Emirates in the northernmost part of the Semail Ophiolite and the Dibba zone, just south of the Musandam Platform exposures. The studied section comprises, from top to bottom and from inner to outer zones, (1) the erosional remnants of the Semail Ophiolite, mainly made up of serpentinized ultramafics in the west and gabbros in the east, (2) high-grade metamorphic rocks which are currently exposed in the core of a nappe anticline near Masafi, (3) far-travelled Hawasina basinal units and Sumeini paleo-slope units of the Dibba Zone, (4) parautochthonous platform carbonates, which are currently well exposed in the Musandam area, and (5) a flexural basin filled with uppermost Cretaceous to Neogene sediments. Two main compressional episodes are generally identified, resulting first in the obduction of the Semail Ophiolite and then in the stacking of underlying platform carbonate units of the former Arabian passive margin, thus accounting for the present architecture of this transect: (1) first, deformation at the plate boundary initiated in the Late Cretaceous, resulting in the obduction of the Semail Ophiolite and the progressive accretion of the Hawasina and Sumeini tectonic wedge on top of the Arabian foreland, leading to a progressive bending of its lithosphere and development of a wide flexural basin; (2) compression resumed during the Neogene, leading to the tectonic stacking of the parautochthonous platform duplexes of Musandam and Margham trends, the development of out-of-sequence thrusts and triangle zones, refolding of the sole thrust of the former Late Cretaceous accretionary wedge and coeval normal (?) high-angle faulting along the contact between the Musandam and Dibba zones. However, seismic profiles and paleo-thermometers also help in identifying another erosional event at the boundary between the Paleogene Pabdeh and the Neogene Fars series. Evidenced by the local erosional truncation of the Pabdeh series in the vicinity of the frontal triangle zone (i.e. the inner part of the former Late Cretaceous foredeep), this Paleogene uplift/unroofing episode is tentatively interpreted here as an evidence for a continuum of compressional deformation lasting from the Late Cretaceous to the Middle Miocene although one may alternatively speculate that it was related to the detachment of the subducted slab. Although carbonate facies are usually not suitable for apatite fission track (AFT) studies, we were able to extract detrital apatites from quartz-bearing Triassic dolomites in the Musandam area. However, the yield and the quality were both poor and too few fission track lengths could be measured, making it difficult to interpret the meaning of the FT ages. The FT dates obtained in this study are therefore compared with those existing in the literature. Fortunately enough, for each sample, at least ten apatite crystals could be used for fission track dating, except for site 6 with only five datable apatite grains. The obtained apatite fission track dates between 28 and 13 Ma, much younger than the Triassic age of the series, are taken to represent reset fission track ages, implying erosion of an up-to-3-km-thick pile of Jurassic–Cretaceous carbonates and Hawasina allochthon during the Neogene. Apatite fission track dates from the ~95 M-old plagiogranites of the Semail complex (Searle and Cox, Geol Mag 139(3):241–255, 2002) obtained in this study and compared with those recently published provide evidences for more than one cooling event. An early unroofing of the ophiolite during the Late Cretaceous is revealed in fission track dates of 72–76 Ma at the top of the ophiolite in the east, which are coeval and also consistent with the occurrence of paleo-soils, rudists and paleo-reefs on top of serpentinized ultramafics in the west. High-pressure rocks at As Sifah in the southeast near Muscat revealed apatite fission track data ranging from ~46 to 63 Ma (Gray et al. 2006). The leucocratic part of the ophiolite (sample UAE 180) yielded comparable young apatite (40.6?±?3.9 Ma) and zircon (46.6?±?4.3 Ma) FT dates. A Cenozoic (~20–21 Ma) exhumation has been determined for the Bani Hamid metamorphic sole in northern Oman, applying low temperature geochronology and combining apatite FT and apatite (U–Th)/He analyses (Gray et al. 2006). In this study, young apatite fission track dates of 20 Ma have also been found but at the base of the ophiolite near Masafi, in the core of the nappe anticline, thus indicating a Neogene age for the refolding of the allochthon and stacking of underlying parautochthonous platform carbonate units. During the subsequent 2D forward Thrustpack kinematic modelling of the regional transect, these AFT data-set has been used, together with available subsurface information, to reconstruct the past architecture of the structural sections through time, accounting for incremental deformation along the various decollement levels, synorogenic sedimentation and erosion, as well as for successive bending and unbending episodes of the Arabian lithosphere.  相似文献   
95.
Zusammenfassung Die Arbeit diskutiert Probleme der tektonischen Entwicklung des Guyana-Schildes, eines gro\en kratonischen Gebietes archaischen Alters. Seine Konsolidation fand viel früher statt als die Konsolidation des Brasilianischen Schildes. Guyana stabilisierte sich schon wÄhrend des Älteren Proterozoikums vor 1800 M. J. Vulkanite und Molasse der Roraima-Formation füllten die Depressionen der gefalteten archaischen Gebiete auf. Der Sockel des Guyana-Schildes wird durch die Guyano Eburnéenne Geosynclinal (Choubert, 1969), die Transamazonische Geosynklinale, gebildet, welche sich von Venezuela bis Französisch-Guyana mit gleichem Streichen über eine Entfernung von mehr als 1000 km verfolgen lÄ\t. Eine archaische Geosynklinale von diesem Ausma\ ist bisher aus anderen Schildgebieten der Erde unbekannt.Die archaischen Metasedimente, Metavulkanite und kristallinen Gesteine von Guyana haben allgemein eine E—W-Streichrichtung und unterscheiden sich damit von der vorherrschenden N—S-Streichrichtung der oberprÄkambrischen Gesteine des Brasilianischen Schildes.Jung-prÄkambrische Geosynklinalen und Orogenesen scheinen im Guyana-Schild zu fehlen. Die in Brasilien aktive jung-proterozoische Assynthische (Baikalische oder Brasilianische) Orogenese hat den Guyana-Schild nicht erfa\t. Dort war die letzte Orogenèse die Post-Barama-Mazaruni-Bartica-Orogenese vor 2000 M. J. Zwischen 2000 M. J. und 1800 M. J. entwickelte sich die PrÄ-Roraima-ErosionsflÄche. Dieser Phase folgte die Ablagerung der tafeligen Roraima-Formation vor 1750 M. J. mit dem anorogenen Post-Roraima-Vulkanismus (Dolerite und Gabbro-Intrusionen). Die gro\e Verbreitung der fast nicht verformten Roraima-Sedimente beweist, da\ der grö\te Teil des Guyana-Schildes wÄhrend des Älteren Proterozoikums stabilisiert war.Das Problem der Entstehung des Amazonas-Beckens und die Rolle der Transcurrent-Verwerfungen sowie das VerhÄltnis zwischen den kontinentalen Transcurrent-Verwerfungen und den Bruchzonen des mittelozeanischen Rückens werden dargestellt.
In this paper some problems of tectonical evolution of the Guiana Shield are discussed that represents a large cratonic area of Archaic age. Its consolidation took much earlier place than the consolidation of the Brazilian Shield. The Guianas were already settled at early Proterozoic time, 1.800 m. y., when molasse and volcanic deposits had been accomplished at depressions of areas folded during the Archaic time 2.000 m. y. The basement of the Guiana Shield is formed by rocks of the vast Guiana-Eburneana Geosyncline (Choubert, 1969), named also Trans-amazonian Geosyncline which has an extension of more than 1.000 km, with the same direction. Such a huge Archaic geosyncline is unknown at an other cratonic area of the world.The predominant trend and structural lineament of the Archaic rocks is quite different than in the Brazilian Shield. The characteristic trend of the early Precambrian rocks of the Guiana Shield is approximately E-W, contrary to the main N-S structural alignement of the Brazilian Shield.Late Precambrian geosynclines and orogeny seem to be absent in the Guiana Shield. The young Proterozoic Assynthic (Baicalian) Orogeny has not more affected the Guiana Shield, where the last orogeny was the Post-Barama-Mazaruni-Bartica Orogeny, which occurred at the Archaic, 2.000 m. y.Between 2.000 m. y. and 1.800 m. y. took place the development of Pre-Roraima erosion surface. It was followed by the deposition of the tabular Roraima Formation, manifesting the stabilisation of the central part of the Shield before 1.750 m. y., when the emplacement of the gabbroic and doleritic volcanites succeeded. The large distribution of the not metamorphosed flat lying Roraima sediments proves that the Guiana Shield was already consolidated during the old Proterozoic time and was never more affected by younger orogenic movements.It is also discussed the problem of origin of the Amazonas Basin, and the important role of the Transcurrent Faults in the tectonic framework of the Guiana Shield and the probable genetic relationship between the transcurrent faults and the fracture zones of the Mid-Atlantic Ridge.

Resumo O Escudo das Guianas representa uma ampla área cratÔnica da Era Arcaica. Sua consolidaÇÃo já ocorrera muito antes de consolidaÇÃo do Escudo Brasileiro. As Guianas tornaram-se estáveis durante a Era Proterozóica inferior, 1.700 m. a. quando deposiÇÕes vulcânicas e molasse de Roraima foram concluidas em depressÕes de áreas dobradas durante a Era Arcaica, O embasamento do Escudo das Guianas é formado pelo imenso Geossinclínio Guiano-Eburneano (Choubert, 1969) ou Transamazoniano, que representa um geossinclinal de mais de 1.000 km de extensÃo, de mesma direÇÃo. Geossinclinal Arqueano de tamanha amplitude nÃo é conhecido em outra regiÃo cratÔnica de mundo.As rochas metassedimentares, metavulcânicas e cristalinas arcaicas tÊm um alinhamento aproximadamente E-W, diferindo do principal alinhamento estrutural N—S do Escudo Brasileiro.Geossinclínos e orogÊnia do Pré-Cambriana superior parecem estar ausentas no Escudo das Guianas. A orogénia do Proterozóico superior (Assíntica ou Baicaliana) nÃo mais afetou o Escudo das Guianas, onde a Última orogÊnia foi a orogÊnia Barama-Mazaruni-Bartica, que ocorreu há 2000 m. a. Entre 2000 m. a. e 1800 m. a. deu-se o desenvolvimento da superfície de erosÃo Pré-Roraima. Esta fase foi seguida pela deposiÇÃo da FormaÇÃo Roraima tabular, o que revela a estabilizaÇÃo da parte central do Escudo, há 1.750 m. a. quando ocorreu o emplacement dos vulcanitos gabróicos e doleríticos. A grande distribuiÇÃo dos sedimentos Roraima quase horizontals nÃo metamorfizados, prova que o Escudo de Guianas já estava consolidado durante o Proterozóico inferior e nÃo foi mais afetado por movimentos orogÊnicos mais jovens.Foi discutido também o papel importante das falhas transcorrentes na constituiÇÃo tectÔnica do Escudo das Guianas; o problema da origem da Bacia AmazÔnica, e a provável relaÇÃo genética entre as falhas transcorrentes as zonas de fratura da Cadeia Meio-Atlântica.

— - . , . , . . 1800 . Roraima , . - (Choubert, 1969), , , 1000 . . , E-W N-S .- , , . - — — . Post Barama-Mazaruni-Bartica Orogenese 2000 . 2000 1800 - — . Roraima — 1700 - ( ). - , . Transcurrent, Transcurrent .
  相似文献   
96.
Lake Superior sediments contain pollen whose changes through time can be corelated with dated pollen diagrams from small lakes in the region. A core collected in 1972 from the deep trough (265 m) off Silver Bay (47° 09′N, 91°20′W) penetrated 6.25 cm of taconite tailings, 55 cm of postglacial silty clay, and 93.5 cm of late-glacial varves. Seven levels in the core were dated by stratigraphic and palynological techniques. The varves stopped forming about 9000 years ago, probably when glacial ice retreated to the north shore. The last 100 varves accumulated at about 10 mm/yr, but the average net sedimentation rate subsequently slowed to 0.05 mm/yr until the time of settlement about 1890. The sedimentation rate then increased by a factor of 10, to 0.5 mm/yr until 1956 when taconite processing began. The postsettlement interval can be recognized by marked increases of ragweed and chenopod pollen that result from land disturbance caused by forest clearance and agriculture. The postsettlement interval is also present at the top of six cores from four other sites in western Lake Superior, collected in water from 25–140 m deep. The postsettlement sedimentation rate varies from 0.1–0.8 mm/yr, suggesting that man has greatly increased sediment yield to the lake in the last 80 years.  相似文献   
97.
Intellectual property rights (IPR) to traditional knowledge (TK) about Australian native plants could justifiably be described as a birthright of Australian Aboriginal people. However, as is generally the case throughout the world, this right is currently not protected under Australian law. A case study is presented describing the approach that was taken to protecting the plant knowledge rights of traditional knowledge (TK) holders who participated in research at Titjikala, central Australia. From a review of international efforts aimed at developing a legal regime for protection of traditional knowledge (TK) intellectual property rights (IPR), we found that protecting traditional knowledge (TK) of plants and their uses is most likely to be achieved through the development of effective protocols for preserving and recording traditional knowledge (TK) and the use of contract law in commercial applications of that knowledge. The process of negotiating a research agreement between the research organisations and the community is described. Relationship building and a partnership approach based on trust and mutual respect were found to be of fundamental importance. The negotiated agreement ensures that the community has an equal share to research partners in any benefits that might arise from commercialisation of research findings. The approach to benefit sharing developed in this project has application in other research projects in which the sharing of traditional knowledge (TK) is a fundamental and essential component of the research process.  相似文献   
98.
The environmental concern favours “dry” waste management systems compared to the more common practice of shallow land burial. With the former, sandwiched soil covers are usually employed. A double barrier concept is presented and discussed for the sandwiched construction. The critical matrix potentials of the two barrier materials appear to have significant influence on the performance of the dual barrier system. Despite some practical problems, the concept appears promising.  相似文献   
99.
The numerical method described in this paper enables the study in terms of stress of the kinematics of seismic faults provided by focal mechanisms. This method assumes a mean state of stress in the source region and is based on the simple mechanical model used for fault population analysis which supposes slip in the direction of the resolved shear stress acting on the fault plane. The proposed algorithm first defines compressional and tensional zones resulting from superimposition of the compressional and tensional quadrants limited by the nodal planes. This enables one to test the data homogeneity. Furthermore, this restricts the space where the principal stress axes have to be searched. Then, for each principal stress reference whose location is constrained by above confined zones, the R value (chosen equal to 2′ − σ1′)/(σ3′ − σ1′)) is computed which fits the slip vector on each nodal plane. This permits one to select a set of preferred seismic fault planes from a set of auxiliary planes. Finally, a state of stress is computed from the preferred seismic fault plane set using the non-linear simplex method already applied to fault populations. This algorithm is constructed so as to avoid two major difficulties: misleading estimation of the deviatoric stress tensor which may result from excessive emphasis by minimizing the residuals by a least squares method if some of the data are wrong and a lengthy prospection of the stress references over all the space of directions. This calculation does not take into account possible changes of the strike and dip of the nodal planes. However, we use rotations of nodal planes in agreement with the first arrival data to test the compatibility of these data with the computed state of stress. Tibetan teleseisms and southern Peruvian microseisms are analyzed and results are compared with kinematics of superficial recent and active faults measured in field in the same regions. This suggests that major seismic events may give a good evaluation of the regional (mean) state of stress. Focal mechanisms of the small events are also modelled by a mean stress deviator, but this differs significantly from the regional state of stress in southern Peru deduced from Quaternary faulting. This may be due to imprecise location of the small events. However, some movements are strongly different from those predicted by the computed mean stress deviator. This suggests that small fault kinematics surely depend on the regional state of stress but that local effects may control the small deformations.  相似文献   
100.
In the Pyrenees, the lherzolites nowhere occur as continuous units. Rather, they always outcrop as restricted bodies, never more than 3 km wide, scattered across Mesozoic sedimentary units along the North Pyrenean Fault. We report the results of a detailed analysis of the geological setting of the Lherz massif (central Pyrenees), the type‐locality of lherzolites and one of the most studied occurrences of mantle rocks worldwide. The Lherz body is only 1.5 km long and belongs to a series of ultramafic bodies of restricted size (a few metres to some hundreds of metres), occurring within sedimentary formations composed mostly of carbonate breccias originating from the reworking of Mesozoic platform limestones and dolomites. The clastic formations also include numerous layers of polymictic breccias reworking lherzolitic clasts. These layers are found far from any lherzolitic body, implying that lherzolitic clasts cannot derive from the in situ fragmentation of an ultramafic body alone, but might also have been transported far away from their sources by sedimentary processes. A detailed analysis of the contacts between the Lherz ultramafic body and the surrounding limestones confirms that there is no fault contact and that sediments composed of ultramafic material have been emplaced into fissures within the brecciated carapace of the peridotites. These observations bear important constraints for the mode of emplacement of the lherzolite bodies. We infer that mantle exhumation may have occurred during Albian strike‐slip deformation linked to the rotation of Iberia along the proto‐North Pyrenean Fault.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号