The subject is reviewed, notwithstanding the existence of a number of disagreeing and/or controversial results found in the literature. First, a brief critical reexamination of the methodology is presented. Second, it is attempted to put the results, or partial conclusions by different authors, using different methods and referring to different geographical regions, into a working scheme. This is done by investigating, as far as possible, the relationships between the electrical conductivity information and other types of geophysical and geological information for each geographical area investigated. It appears almost impossible to draw general conclusions that hold for the entire Earth. Conclusions are given for those areas with some very well-defined geomorphological characters. Unfortunately, the available investigations still appear to give a poor coverage of several types of geographic areas with specific tectonic characteristics, and certainly the scientific coverage by electromagnetic methods of investigation cannot be compared with those available today from seismological methods. Investigating the electrical conductivity structure of the lower crust certainly opens relevant heuristic possibilities, but there appears to be a great need both for a refinement in the basic methodology, and for a better coverage of the investigated areas. 相似文献
Coarse-grained subaqueous fans are vital oil and gas exploration targets in the Bohai Bay basin, China. The insufficient understanding of their sedimentary processes, depositional patterns, and controlling factors restricts efficient exploration and development. Coarse-grained subaqueous fans in the Yong′an area, Dongying Depression, are investigated in this study. These fans include nearshore subaqueous fans, and sublacustrine fans, and their sedimentary processes, depositional patterns and distribution characteristics are mainly controlled by tectonic activity and paleogeomorphology. Nearshore subaqueous fans developed near the boundary fault during the early–middle deposition stage due to strong tectonic activity and large topographic subsidence. Early sublacustrine fans developed at the front of the nearshore subaqueous fans in the area where the topography changed from gentle to steep along the source direction. While the topography was gentle, sublacustrine fans did not develop. During the late weak tectonic activity stage, late sublacustrine fans developed with multiple stages superimposed. Frequent fault activity and related earthquakes steepened the basin margin, and the boundary fault slopes were 25.9°–34°. During the early–middle deposition stage, hyperpycnal flows triggered by outburst floods developed. During the late deposition stage, with weak tectonic activity, seasonal floods triggered hyperpycnal flows, and hybrid event beds developed distally. 相似文献
This study contributes to identifying and spatializing the different types of nitrate sources by combining hydrogeochemical and isotopic data with principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) multicriteria statistical methods. The methodology is applied to the strategic Mons Basin chalk aquifer (Belgium). The results are based on a whole dataset containing 72 water samples with analyses of the hydrogeochemical parameters (temperature, pH, electrical conductivity (EC), redox potential, dissolved O2), alkalinity, total organic carbon (TOC), silica (SiO2), major and minor ions (NO3–, NH4+, Ca2+, dissolved Fe and Mn, K+, Mg2+, Na+, Sr2+, Cl–, F–, SO4–, B) and multiple stable isotope ratios (δ11B, δ15N–NO3–, δ18O–NO3–). Compared to classical PCA, the recently developed t-SNE method, which considers nonlinear relationships between variables and preserves local-scale similarities in a low-dimensional space, showed much better performance in discriminating different groups of samples and related zones in the aquifer. t-SNE results combined with isotope ratios highlighted four zones in the aquifer (grouped as A–D) and the presence of denitrification fronts. Group A presents a manure signature (δ15N–NO3– – mean (μ) +12.78‰, standard deviation (σ) 6.48‰; δ11B – μ 29.96‰, σ 6.91‰). Group B exhibits both manure and inorganic fertilizer signatures (δ15N–NO3– – μ 6.27‰, σ 2.55‰; δ11B – μ 15.86‰, σ 9.69‰). Group C shows a contamination by sewage (δ15N–NO3– – μ 12.67‰, σ 5.60‰; δ11B – μ 9.97‰, σ 7.08‰). Group D presents a mixed signature (δ15N–NO3– – μ 9.25‰, σ 2.94‰; δ11B – μ 20.00‰, σ 6.70‰).