首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   3篇
测绘学   1篇
大气科学   7篇
地球物理   60篇
地质学   53篇
海洋学   6篇
天文学   24篇
综合类   1篇
自然地理   13篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2015年   3篇
  2014年   6篇
  2013年   7篇
  2012年   9篇
  2011年   4篇
  2010年   4篇
  2009年   12篇
  2008年   7篇
  2007年   3篇
  2006年   8篇
  2005年   4篇
  2004年   6篇
  2003年   8篇
  2002年   6篇
  2001年   7篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1963年   1篇
  1960年   3篇
  1958年   1篇
  1957年   1篇
排序方式: 共有165条查询结果,搜索用时 203 毫秒
51.
A particle-based numerical simulation procedure is presented for the generation and calibration of geogrid-stabilised soil on the basis of experimental data. The paper describes how to simulate a biaxial geogrid depending on a specific particle and parallel bond model. Numerical and experimental pull-out tests have been performed to reproduce the pull-out force–strain behaviour of a biaxial geogrid specimen embedded in granular material under special consideration of the grain-size distribution, initial relative density, normal stress state as well as sample installation. Model analysis of soil mobilisation and geogrid deformation is presented to understand the significance of the interlocking effect as key mechanism for soil stabilisation. The procedure can be used for further investigations of the influence and effects of soil stabilisation depending on the significant properties of the interacting components (soils and geogrids).  相似文献   
52.
GRAVITAS is an X-ray observatory, designed and optimised to address the ESA Cosmic Vision theme of ??Matter under extreme conditions??. It was submitted as a response to the call for M3 mission proposals. The concept centres around an X-ray telescope of unprecedented effective area, which will focus radiation emitted from close to the event horizon of black holes or the surface of neutron stars. To reveal the nature and behaviour of matter in the most extreme astrophysical environments, GRAVITAS targets a key feature in the X-ray spectra of compact objects: the iron K?? line at ~6.5?keV. The energy, profile, and variability of this emission line, and the properties of the surrounding continuum emission, shaped by General Relativity (GR) effects, provide a unique probe of gravity in its strong field limit. Among its prime targets are hundreds of supermassive black holes in bright Active Galactic Nuclei (AGN), which form the perfect laboratory to help understand the physical processes behind black hole growth. Accretion plays a fundamental role in the shaping of galaxies throughout cosmic time, via the process of feedback. Modest (~sub-arcmin) spatial resolution would deliver the necessary sensitivity to extend high quality X-ray spectroscopy of AGN to cosmologically-relevant distances. Closer to home, ultra-high count rate capabilities and sub-millisecond time resolution enable the study of GR effects and the equation of state of dense matter in the brightest X-ray binaries in our own Galaxy, using multiple probes, such as the broad iron line, the shape of the disk continuum emission, quasi-periodic oscillations, reverberation mapping, and X-ray burst oscillations. The enormous advance in spectral and timing capability compared to current or planned X-ray observatories would enable a vast array of additional scientific investigations, spanning the entire range of contemporary astrophysics from stars to distant galaxy clusters. Despite its breakthrough capabilities, all enabling technologies for GRAVITAS are already in a high state of readiness. It is based on ultra light-weight X-ray optics and a focal plane detector using silicon technology. The baseline launcher would be a Soyuz?CFregat to place GRAVITAS into a zero inclination, low-earth orbit, providing low and relatively stable background.  相似文献   
53.
ABSTRACT

Climate change/variability accompanied by anthropogenic activities can alter the runoff response of landscapes. In this study we investigate the integrated impacts of precipitation change/variability and landscape changes, specifically wetland drainage practices, on streamflow regimes in wetland-dominated landscapes in the Assiniboine and Saskatchewan River basins of the North American Prairies. Precipitation and streamflow metrics were examined for gradual (trend type) and abrupt (shift type) changes using the modified Mann-Kendall trend test and a Bayesian change point detection methodology. Results of statistical analyses indicate that precipitation metrics did not experience statistically significant increasing or decreasing changes and there was no statistical evidence of streamflow regime change over the study area except for one of the smaller watersheds. The absence of widespread streamflow and precipitation changes suggests that wetland drainage did not lead to detectable changes in streamflow metrics over most of the Canadian portion of the Prairies between 1967 and 2007.
Editor Z.W. Kundzewicz Associate editor None assigned  相似文献   
54.
Terrestrial cosmogenic nuclide (TCN) 10Be surface exposure ages for strath terraces along the Braldu River in the Central Karakoram Mountains range from 0.8 to 11 ka. This indicates that strath terrace formation began to occur rapidly upon deglaciation of the Braldu valley at  11 ka. Fluvial incision rates for the Braldu River based on the TCN ages for strath terraces range from 2 to 29 mm/a. The fluvial incision rates for the central gorged section of the Braldu River are an order of magnitude greater than those for the upper and lower reaches. This difference is reflected in the modern stream gradient and valley morphology. The higher incision rates in the gorged central reach of the Braldu River likely reflect differential uplift above the Main Karakoram Thrust that has resulted in the presence of a knickpoint and more rapid fluvial incision. The postglacial fluvial incision rate (2–3 mm/a) for the upper and lower reaches are of the same order of magnitude as the exhumation rates estimated from previously published thermochronological data for the Baltoro granite in the upper catchment region and for the adjacent Himalayan regions.  相似文献   
55.
We present a boundary element method to compute numerical approximations to the non-linear Molodensky problem, which reconstructs the surface of the Earth from the gravitational potential and the gravity vector. Our solution procedure solves a sequence of exterior oblique Robin problems and is based on a Nash-Hörmander iteration. We apply smoothing with the heat equation to overcome a loss of derivatives in the surface update. Numerical results show the error between the approximation and the exact solution in a model problem.  相似文献   
56.
A regression-based downscaling technique was applied to monthly mean surface wind observations from stations throughout western Canada as well as from buoys in the Northeast Pacific Ocean over the period 1979–2006. A predictor set was developed from principal component analysis of the three wind components at 500?hPa and mean sea-level pressure taken from the NCEP Reanalysis II. Building on the results of a companion paper, Curry et al. (Clim Dyn 2011, doi:10.1007/s00382-011-1173-3), the downscaling was applied to both wind speed and wind components, in an effort to evaluate the utility of each type of predictand. Cross-validated prediction skill varied strongly with season, with autumn and summer displaying the highest and lowest skill, respectively. In most cases wind components were predicted with better skill than wind speeds. The predictive ability of wind components was found to be strongly related to their orientation. Wind components with the best predictions were often oriented along topographically significant features such as constricted valleys, mountain ranges or ocean channels. This influence of directionality on predictive ability is most prominent during autumn and winter at inland sites with complex topography. Stations in regions with relatively flat terrain (where topographic steering is minimal) exhibit inter-station consistencies including region-wide seasonal shifts in the direction of the best predicted wind component. The conclusion that wind components can be skillfully predicted only over a limited range of directions at most stations limits the scope of statistically downscaled wind speed predictions. It seems likely that such limitations apply to other regions of complex terrain as well.  相似文献   
57.
58.
The prairie wetlands of northern USA and Canada exist in numerous topographical depressions within the glaciated landscape. The wetlands are disconnected from each other most of the time with respect to surface-water drainage. The wetland water balance is controlled by snowmelt runoff and snowdrift from the surrounding uplands, precipitation, evapotranspiration, groundwater exchange, and occasional “fill-spill” connections to other wetlands. Salinity of water and the seasonal variability of water level in these wetlands have a strong influence on the ecosystem. Clay-rich glacial tills, covering much of the region, have very low (0.001–0.01 m/yr) hydraulic conductivity, except for the top several meters where the factures and macropores increase conductivity up to 1,000 m/yr. Transpiration in the wetland margin induces infiltration and lateral flow of shallow groundwater from wetland ponds through the high-conductivity zone, which strongly affects the water balance of wetlands. In contrast, groundwater flow in the deeper low-conductivity till has minor effects on water balance, but has a strong influence on salinity because the flow direction determines if the salts accumulate in wetlands (upward flow) or are leached out (downward flow) under wetlands. Understanding of the roles of shallow and deep groundwater systems will improve the hydrological conceptual framework for the management of wetland ecosystems.  相似文献   
59.
Variations in some physical, chemical, and nutrient conditions were investigated at Turkwel Gorge Reservoir and its inflowing river, Suam between 1994 and 1995. Seasonal changes in inflow volume had the greatest impact on the reservoir and river conditions investigated. A wide fluctuation in inflow volume combined with a regulated outflow independent of season resulted in a draw down of over 10 m in each year. Flood inflows during the wet season resulted in the lowest values of Secchi depth (range, 0.09–2.16 m), electrical conductivity (EC, range = 140–200 mS cm−1) and total alkalinity (TA, range = 75–111 mg l−1) while the highest values were measured during the dry season. A functional relation between EC and TA (TA = 0.529 mg l−1, EC: R2 = 0.876) suggests a predominance of carbonates among the anions. Vertical profiles of temperature and dissolved oxygen (DO) revealed that the reservoir is monomictic with a wide variation in the depth of the daily mixed layer. High values of pH (range = 6.7–8.9) and DO (range = 4.9–9.2 mg l−1) were associated with periods of peak phytoplankton photosynthesis while the lowest values followed reservoir mixing. Peak total nitrogen (TN, range = 119–526 μg l−1) and total phosphorus (TP, range = 8.9–71.6 μg l−1) levels during the wet season resulted from increased river loading. Values of dissolved reactive silica (DRS, range = 0.41–9.77 mg l−1) showed a wet season decline which was related to diatom depletion during the wet season. Annual reservoir areal loading rates of 27.38, 10.90 and 408.5 mg m−2 were computed for TN, TP and DRS respectively based on estimates of inflowing river loads in 1994.

At the inflowing river Suam, low levels of EC (range = 107–210 μS cm−1) and TA (range = 62–125 mg l−1) occurred during the wet season while the highest levels occurred shortly before the river dried up. The first flood water at the resumption of river inflow in March was characterized by very low levels of DO (range = 1.8–8.2 mg l−1) and high levels of TN (range = 205–3354 μg l−1) and TP (102–1259 μg l−1). River pII (6.9–7.7) and DRs (range = 9.01–19.93 mg l−1) varied irregularly throughout the year.  相似文献   

60.
Surface wind speed is a key climatic variable of interest in many applications, including assessments of storm-related infrastructure damage and feasibility studies of wind power generation. In this work and a companion paper (van der Kamp et al. 2011), the relationship between local surface wind and large-scale climate variables was studied using multiple regression analysis. The analysis was performed using monthly mean station data from British Columbia, Canada and large-scale climate variables (predictors) from the NCEP-2 reanalysis over the period 1979–2006. Two regression-based methodologies were compared. The first relates the annual cycle of station wind speed to that of the large-scale predictors at the closest grid box to the station. It is shown that the relatively high correlation coefficients obtained with this method are attributable to the dominant influence of region-wide seasonality, and thus contain minimal information about local wind behaviour at the stations. The second method uses interannually varying data for individual months, aggregated into seasons, and is demonstrated to contain intrinsically local information about the surface winds. The dependence of local wind speed upon large-scale predictors over a much larger region surrounding the station was also explored, resulting in 2D maps of spatial correlations. The cross-validated explained variance using the interannual method was highest in autumn and winter, ranging from 30 to 70% at about a dozen stations in the region. Reasons for the limited predictive skill of the regressions and directions for future progress are reviewed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号