首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   0篇
地球物理   6篇
地质学   42篇
海洋学   23篇
  2022年   3篇
  2021年   5篇
  2020年   6篇
  2019年   8篇
  2018年   7篇
  2017年   4篇
  2016年   4篇
  2015年   6篇
  2014年   3篇
  2013年   4篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   5篇
排序方式: 共有71条查询结果,搜索用时 2 毫秒
21.
Doklady Earth Sciences - The main ore minerals of all layers of cobalt-rich ferromanganese crusts of Guyot Govorov of the Magellanic Mountains of the Pacific Ocean are poorly crystallized, poorly...  相似文献   
22.
Kononov  M. V.  Lobkovsky  L. I. 《Geotectonics》2019,53(6):658-674
Geotectonics - The article considers the history of seafloor spreading of the Eurasian Basin. The sharp decline in the spreading rate in the Eocene about 46 Ma was revealed, which is recorded in...  相似文献   
23.
Old and modern data are given and discussed. They allow us to decide where the real position of the south marginal suture of the East European Craton is. According to the geophysical and aerogeophysical studies, Paleozoic deposits of the Karpinskii Ridge are bedded upon deeply sunken continuation of Archean-Proterozoic complexes comprising the Voronezh massif and crystalline rocks belonging to the Astrakhan Dome. The latter have a pre-Riphean age. It is possible that the crust in the southeastern part of ridge in a narrow zone with >20 km depth of the basement surface (BS) and, partially, in the Sarpinskii trough has oceanic origin.  相似文献   
24.
The perspectives of development of the Varanger–Timan petroleum basin are considered. The Varanger–Timan oil-and-gas basin was formed in the Riphean and Vendian on the passive continental margin of the East European Plate. Evolution of the Barents–Kara region in the Mesoproterozoic and Neoproterozoic led to a mosaic junction of the lithospheric plates having different ages and having undergone significant alterations during the Caledonian and Variscan orogenies. The spatiotemporal regularities of the interaction between geodynamic processes and conditions providing for the formation of conventional and unconventional hydrocarbon fields are described.  相似文献   
25.
26.
The problem of incomparability of errors of 1st and 2nd kind (of false alarm and of missing of real danger) became solved after degrees of ecological disasters began to be expressed monetary. Requirements to reliability of monitoring systems (MS) signals are deduced from ratio of expenses of different kind. The sufficient condition of MS economic efficiency is resulted also. These results should be considered by working out specifications on MS.  相似文献   
27.
The segmented structure of the Karpinsky Ridge is determined by NE-trending transverse strikeslip faults with offsets of approximately 30–40 km. The newly recognized Pribrezhny Fault and the well-known Agrakhan Fault are the largest. A new correlation scheme for structural elements of the ridge’s eastern segment and its underwater continuation is proposed with account of offset along the Pribrezhny Fault. According to this scheme, the Semenovsky Trough rather than the Dzhanai Trough is an onshore continuation of the underwater Zyudevsky Trough. The uplift located south of the Zyudevsky Trough is correlated with the Promyslovy-Tsubuk Swell offset along the Pribrezhny Fault. In turn, this uplift is displaced along the right-lateral strike-slip fault that coincides with the Agrakhan Fault. The transverse faults were formed during the Early Permian collision related to the closure of the basin, which was presumably underlain by the oceanic crust. The faults were active during the Early Triassic rifting and Late Triassic inversion. Judging from the map of the surface of the Maikop sediments, the Agrakhan Fault does not cross the Terek-Caspian Trough. Bending arcwise, the fault joins a system of right-lateral strike-slip faults that border the Daghestan Wedge in the east. A system of rightlateral strike-slip faults may also be traced along the western coast of the Caspian Sea. The Agrakhan Fault as a northern element of this system functioned mostly in the Late Paleozoic-Early Mesozoic in connection with the formation of the fold-thrust structure of the Karpinsky Ridge. In the east the faults of the southern segment bound the Caucasus syntaxis of the Alpine Belt; they have retained their activity to the present day.  相似文献   
28.
29.
The within-Iranian backarc basins, including the largest Sebzawar Basin, opened in the Mid-Cretaceous. Spreading in this basin was completed by the end of the Cretaceous. The basin closed in the Eocene with the formation of subduction zones and volcanic-plutonic belts. Data on North Afghanistan and the Central Pamirs have allowed us to reconstruct the eastern continuation of the Sebzawar Basin up to the west of the Central Pamirs. No fragments of oceanic crust are retained in Afghanistan and the Pamirs, but by analogy with the Sebzawar Basin, thick Paleogene flysch sequences and volcanic-plutonic complexes indicate setting of the active margin and subduction. It is suggested that the belt of mantle seismicity that extends for 550 km to the south of the Central Pamirs is related to the plunging and deformation of the lithosphere once underlying the Cretaceous-Paleogene basin. The extremely vigorous seismicity of the Hindu Kush megasource at the western termination of the seismic belt is caused by a number of specific tectonic features that predetermined the early onset of plunging of the subducted sheet (slab). In the megasource, the slab sank to a depth of 300 km and became vertical; its active deformation has proceeded up to the present. In the eastern part of the seismic belt, the slab started to plunge much later and therefore has retained a gentle slope, so that the depth of the hypocenters is shallower (down to 200 km), and earthquakes are less strong.  相似文献   
30.
The West African region embraces a number of coastal sedimentary basins, which continued in deep-water areas of the Atlantic Ocean. It includes the following oil-and-gas-bearing basins: the Gulf of Guinea, the Kwanza–Cameroonian, and the Namibian. The sedimentary cover of the basins of this passive margin is represented by Mesozoic–Cenozoic deposits. The composition of sediments accumulated in them is quite specific and surprisingly units over the vast areas. The tectonic structure of the majority of the continental margins of West Africa makes possible to refer them to the margins of epiplatform orogenic belts. The existence of two systems of linear troughs—internal and external—on the passive margins at the early stages of continent–ocean transition zones relates deep-water hydrocarbon deposits to internal troughs filled by younger sediments: the alluvial fans of submarine rivers and landslide fronts with prograde formations (turbidites, debris flows, etc.). Late Cretaceous and Middle Paleogene clay formations played the role of source beds in the region, so-called “black clays.” An analysis of over 200 hydrocarbon fields, mainly petroleum, discovered in the past 10–15 years in the region revealed a clear tendency of these fields occurring in a productive zone of oil pools extending in a sea depth interval of 400–3000 m on the continental slope and possibly to 4000 m at the continental rise. Moreover, all discovered fields have been estimated in terms of reserves from large to giant. It is also noteworthy that within the shallow of this region, which includes the shelf and the coastal plain, only a number of small, insignificant oil and gas pays have been discovered. The main of oil and gas bearing potential prospects are related to deposits in the middle and lower parts of the continental slope and possibly adjacent areas of the continental rise. In the long term, the drilling objectives will be both postsalt and presalt deep-water oil-and-gas fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号