首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   550篇
  免费   8篇
  国内免费   2篇
测绘学   8篇
大气科学   50篇
地球物理   134篇
地质学   187篇
海洋学   43篇
天文学   89篇
自然地理   49篇
  2020年   7篇
  2019年   5篇
  2018年   5篇
  2017年   7篇
  2016年   9篇
  2015年   8篇
  2014年   3篇
  2013年   30篇
  2012年   10篇
  2011年   17篇
  2010年   21篇
  2009年   28篇
  2008年   24篇
  2007年   20篇
  2006年   18篇
  2005年   11篇
  2004年   12篇
  2003年   18篇
  2002年   13篇
  2001年   9篇
  2000年   19篇
  1999年   11篇
  1998年   9篇
  1997年   6篇
  1996年   5篇
  1995年   10篇
  1994年   6篇
  1993年   5篇
  1992年   6篇
  1991年   7篇
  1990年   10篇
  1989年   5篇
  1988年   6篇
  1987年   9篇
  1986年   5篇
  1985年   11篇
  1984年   18篇
  1983年   19篇
  1982年   17篇
  1981年   15篇
  1980年   6篇
  1979年   12篇
  1978年   9篇
  1977年   7篇
  1976年   4篇
  1975年   4篇
  1974年   9篇
  1973年   11篇
  1972年   3篇
  1971年   4篇
排序方式: 共有560条查询结果,搜索用时 15 毫秒
51.
Abstract

The zonal wavenumber spectra of the geopotential heights of the 300‐ and 500‐mb surfaces in the Southern Hemisphere were determined for each month between May 1972 and November 1979 using daily operational analyses produced by the Australian Bureau of Meteorology. During over one‐quarter of the “summer” months (November through March) there are very prominent peaks at zonal wavenumber five in the region of the mid‐latitude jet (~35–60°S). Frequently wavenumber five totally dominates the eddy fields in individual daily maps so that height contours in mid‐latitudes take on virtually pentagonal shapes. During periods when wavenumber 5 is prominent, it is observed to propagate eastward in a very regular manner with a period of about eleven days. All these findings are consistent with Salby's (1982) earlier results concerning the Southern Hemisphere height fields during the first few months of the FGGE experiment.

There is little evidence for a similar phenomenon in the winter circulation of the Southern Hemisphere.  相似文献   
52.
Transboundary impacts on regional ground water modeling in Texas   总被引:1,自引:0,他引:1  
Recent legislation required regional grassroots water resources planning across the entire state of Texas. The Texas Water Development Board (TWDB), the state's primary water resource planning agency, divided the state into 16 planning regions. Each planning group developed plans to manage both ground water and surface water sources and to meet future demands of various combinations of domestic, agricultural, municipal, and industrial water consumers. This presentation describes the challenges in developing a ground water model for the Llano Estacado Regional Water Planning Group (LERWPG), whose region includes 21 counties in the Southern High Plains of Texas. While surface water is supplied to several cities in this region, the vast majority of the regional water use comes from the High Plains aquifer system, often locally referred to as the Ogallala Aquifer. Over 95% of the ground water demand is for irrigated agriculture. The LERWPG had to predict the impact of future TWDB-projected water demands, as provided by the TWDB, on the aquifer for the period 2000 to 2050. If detrimental impacts were noted, alternative management strategies must be proposed. While much effort was spent on evaluating the current status of the ground water reserves, an appropriate numerical model of the aquifer system was necessary to demonstrate future impacts of the predicted withdrawals as well as the effects of the alternative strategies. The modeling effort was completed in the summer of 2000. This presentation concentrates on the political, scientific, and nontechnical issues in this planning process that complicated the modeling effort. Uncertainties in data, most significantly in distribution and intensity of recharge and withdrawals, significantly impacted the calibration and predictive modeling efforts. Four predictive scenarios, including baseline projections, recurrence of the drought of record, precipitation enhancement, and reduced irrigation demand, were simulated to identify counties at risk of low final ground water storage volume or low levels of satisfied demand by 2050.  相似文献   
53.
143Nd/144Nd ratios, and Sm and Nd abundances, are reported for particulates from major and minor rivers of the Earth, continental sediments, and aeolian dusts collected over the Atlantic, Pacific, and Indian Oceans. Overall, Sm/Nd ratios and Nd isotopic compositions in contemporary continental erosion products vary within the small ranges of 147Sm/144Nd= 0.115 ± 0.01 and143Nd/144Nd= 0.51204 ± 0.0002 (εNd = −11.4 ± 4). The average period of residence in the continental crust is estimated to be1.70 ± 0.35Ga.

These results combined with data from the literature have implications for the age, history, and composition of the sedimentary mass and the continental crust: (1) The average “crustal residence age” of the whole sedimentary mass is about 1.9 Ga. (2) The range of Nd isotope compositions in the continent derived particulate input to the oceans is the same as Atlantic sediments and seawater, but lower than those of the Pacific, demonstrating the importance of Pacific volcanism to Pacific Nd chemistry. (3) The average ratio of Sm/Nd is about 0.19 in the upper continental crust, and has remained so since the early Archean. This precludes the likelihood of major mafic to felsic or felsic to mafic trends in the overall composition of the upper continental crust through Earth history. (4) Sediments appear to be formed primarily by erosion of continental crust having similar Sm/Nd ratios, rather than by mixing of mafic and felsic compositions. (5) The average ratio of 143Nd/144Nd≈ 0.5117 (εNd ≈ −17) in the upper continental crust, assuming its mean age is about 2 Ga. (6) The uniformity of the SmNd isotopic systematics in river and aeolian particulates primarily reflects efficient recycling of old sediment by sedimentary processes on a short time scale compared to the amount of time the material has resided in the crust.  相似文献   

54.
55.
56.
Major Ion Characterization of Coastal Saline Ground Waters   总被引:1,自引:0,他引:1  
  相似文献   
57.
58.
It was remarked by Hurst in 1951 that the adjusted range gives the size of the smallest reservoir capable of providing a constant discharge equal to the mean inflow. Since that time this range and its rescaled modification, the Hurst range, have been widely discussed, not however primarily with a view to applying them to reservoir design problems, but rather on account of their possible relevance to the simulation of geophysical time series.Acknowledging the well-known conceptual weaknesses of adjusted ranges and the theoretical difficulties that inhibit their direct utilisation in the design and operation of real reservoirs, the authors argue that the interest displayed on ranges during the past few decades justifies the effort of eliminating one in particular of these weakness, namely their non-implementability as operating policies, a consequence of the fact that they can only be retrospectively evaluated. The paper proposes modifications in which the unknowable mean and standard deviation of future samples are replaced by the known mean and sample standard deviation of historical data, leading to the historically adjusted range and the historically rescaled and adjusted range. The latter is produced as an implementable approximation to Hurst's (1951) solution to the optimal reservoir problem.The expected values of the new ranges are evaluated and numerically tabulated.  相似文献   
59.
This paper describes an extension to the Combined Hydrology And Stability Model (CHASM) to fully include the effects of vegetation and slope plan topography on slope stability. The resultant physically based numerical model is designed to be applied to site‐specific slopes in which a detailed assessment of unsaturated and saturated hydrology is required in relation to vegetation, topography and slope stability. Applications are made to the Hawke's Bay region in New Zealand where shallow‐seated instability is strongly associated with spatial and temporal trends in vegetation cover types, and the Mid‐Levels region in Hong Kong, an area subject to a variety of landslide mechanisms, some of which may be subject to strong topographic control. An improved understanding of process mechanism, afforded by the model, is critical for reliable and appropriate design of slope stabilization and remedial measures. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
60.
Currently available systems for monitoring both negative and positive pore pressures have certain restrictions as to their use. A system design is described that seeks to overcome some of the potentially more restrictive elements insofar as site investigations in tropical slopes are concerned. In particular, the system uses an integrated approach to both pore pressure and ancillary (e.g. raingauge) monitoring. Initial trials of the instrumentation suggest its suitability for pore pressure recording where high temporal resolution is needed in both negative and positive pressures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号