首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1057篇
  免费   25篇
  国内免费   7篇
测绘学   26篇
大气科学   112篇
地球物理   191篇
地质学   435篇
海洋学   76篇
天文学   170篇
综合类   5篇
自然地理   74篇
  2021年   8篇
  2020年   7篇
  2019年   16篇
  2018年   21篇
  2017年   21篇
  2016年   35篇
  2015年   20篇
  2014年   34篇
  2013年   51篇
  2012年   29篇
  2011年   50篇
  2010年   42篇
  2009年   67篇
  2008年   37篇
  2007年   38篇
  2006年   35篇
  2005年   31篇
  2004年   37篇
  2003年   39篇
  2002年   28篇
  2001年   17篇
  2000年   23篇
  1999年   18篇
  1998年   10篇
  1997年   16篇
  1996年   10篇
  1995年   12篇
  1994年   14篇
  1993年   12篇
  1992年   8篇
  1990年   12篇
  1989年   7篇
  1987年   11篇
  1986年   8篇
  1985年   15篇
  1984年   20篇
  1983年   8篇
  1982年   18篇
  1981年   12篇
  1980年   18篇
  1979年   9篇
  1978年   9篇
  1977年   10篇
  1976年   10篇
  1975年   9篇
  1974年   9篇
  1973年   11篇
  1971年   11篇
  1967年   7篇
  1959年   7篇
排序方式: 共有1089条查询结果,搜索用时 115 毫秒
191.
The compound NaFeGe2O6 was grown synthetically as polycrystalline powder and as large single crystals suitable for X-ray and neutron-diffraction experiments to clarify the low temperature evolution of secondary structural parameters and to determine the low temperature magnetic spins structure. NaFeGe2O6 is isotypic to the clinopyroxene-type compound aegirine and adopts the typical HT-C2/c clinopyroxene structure down to 2.5?K. The Na-bearing M2 polyhedra were identified to show the largest volume expansion between 2.5?K and room temperature, while the GeO4 tetrahedra behave as stiff units. Magnetic susceptibility measurements show a broad maximum around 33?K, which marks the onset of low-dimensional magnetic ordering. Below 12?K NaFeGe2O6 transforms to an incommensurately modulated magnetic spin state, with k?=?[0.323, 1.0, 0.080] and a helical order of spins within the M1-chains of FeO6 octahedra. This is determined by neutron-diffraction experiments on a single crystal. Comparison of NaFeGe2O6 with NaFeSi2O6 is given and it is shown that the magnetic ordering in the latter compound, aegirine, also is complex and is best described by two different spin states, a commensurate one with C2??/c?? symmetry and an incommensurate one, best being described by a spin density wave, oriented within the (1 0 1) plane.  相似文献   
192.
An extensive characterisation of the magnetic properties of synthetic powders of kuramite, with formal composition Cu3SnS4, was performed. Powders were investigated through superconducting quantum interference device (SQUID) magnetometry, electron paramagnetic resonance (EPR) spectroscopy, X-ray powder diffraction (XRPD), scanning and transmission electron microscopies (SEM and TEM) and microanalysis. SEM and TEM reveal the presence of nanodimensioned particles. XRPD clearly shows that Cu3SnS4 crystallised in a cubic sphalerite-type structural model, in spite of the stannite-type tetragonal structure described for the natural phase. This difference arises from a full random distribution of cations. Synthetic kuramite nanopowders exhibit a marked paramagnetism, originated by the presence of Cu(II), definitely assessed by EPR measurements. Moreover, the overall magnetic behaviour of the sample cannot be simply ascribed to diluted paramagnetism, and this suggests the presence of strong superexchange interactions among Cu(II) ions even at room temperature. The main consequences of these results are the definitive assessment of the chemical formula Cu(I)2Cu(II)SnS4 and of a random distribution of Cu(II), Cu(I) and Sn(IV) ions within the available tetrahedral sites.  相似文献   
193.
The study of climate impacts on Living Marine Resources (LMRs) has increased rapidly in recent years with the availability of climate model simulations contributed to the assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Collaboration between climate and LMR scientists and shared understanding of critical challenges for such applications are essential for developing robust projections of climate impacts on LMRs. This paper assesses present approaches for generating projections of climate impacts on LMRs using IPCC-class climate models, recommends practices that should be followed for these applications, and identifies priority developments that could improve current projections. Understanding of the climate system and its representation within climate models has progressed to a point where many climate model outputs can now be used effectively to make LMR projections. However, uncertainty in climate model projections (particularly biases and inter-model spread at regional to local scales), coarse climate model resolution, and the uncertainty and potential complexity of the mechanisms underlying the response of LMRs to climate limit the robustness and precision of LMR projections. A variety of techniques including the analysis of multi-model ensembles, bias corrections, and statistical and dynamical downscaling can ameliorate some limitations, though the assumptions underlying these approaches and the sensitivity of results to their application must be assessed for each application. Developments in LMR science that could improve current projections of climate impacts on LMRs include improved understanding of the multi-scale mechanisms that link climate and LMRs and better representations of these mechanisms within more holistic LMR models. These developments require a strong baseline of field and laboratory observations including long time series and measurements over the broad range of spatial and temporal scales over which LMRs and climate interact. Priority developments for IPCC-class climate models include improved model accuracy (particularly at regional and local scales), inter-annual to decadal-scale predictions, and the continued development of earth system models capable of simulating the evolution of both the physical climate system and biosphere. Efforts to address these issues should occur in parallel and be informed by the continued application of existing climate and LMR models.  相似文献   
194.
The presence of arsenic (As) in groundwater and its effect on human health has become an issue of serious concern in recent years. The present study assessed the groundwater quality of the Bishnupur District, Manipur, with respect to drinking water standards. Higher concentrations of pH, iron and phosphate were observed at several locations. Phosphate and iron levels were highest in the pre-monsoon, followed by monsoon and post-monsoon seasons. The arsenic concentrations were highest during post-monsoon (1–200 μg L−1) as compared to pre-monsoon (1–108 μg L−1) and monsoon (2–99 μg L−1). Kwakta and Ngakhalawai show higher levels of arsenic concentration as compared to the prescribed World Health Organization (WHO) and Bureau of Indian Standards (BIS) norms. Arsenic showed a strong positive correlation with phosphate and negative correlation with sulphate, suggesting a partial influence of anthropogenic sources. The study suggests that the Bishnupur area has an arsenic contamination problem, which is expected to increase in the near future.  相似文献   
195.
Sudden collapse of the Quaternary soil to form sinkholes on the order of meters and tens of meters has been a geologic phenomenon within living memory in a localized area north of Lake Chiemsee in Southeast Germany. Failing a satisfying explanation, a relation with an undefined glaciation process has always been proposed. Excavations and geophysical measurements at three newly affected sites show underground features such as prominent sandy-gravelly intrusions and extrusions typical of rock liquefaction processes well known to occur during strong earthquakes. Since strong earthquakes can reasonably be excluded to have affected the area under discussion, it has been suggested that the observed widespread liquefaction is related with the recently proposed Holocene Chiemgau meteorite impact event. Except for one earlier proposed but unassertive relation between impact and liquefaction, the obviously direct association of both processes in the Chiemgau area emphasizes that observed paleoliquefaction features need not necessarily have originated solely from paleoseismicity but can provide a recognizable regional impact signature.  相似文献   
196.
197.
The evolution of the North Pacific Ecosystem Model for Understanding Regional Oceanography (NEMURO) family of models to study marine ecosystems is reviewed. Applications throughout the North Pacific have shown the models to be robust and to be able to reproduce 1D, 2D and 3D components of nutrient, carbon cycle and biogeochemical cycles as well as aspects of the lower trophic levels ecosystem (phyto- and zooplankton). NEMURO For Including Saury and Herring, an extension that includes higher trophic levels, can be run uncoupled or coupled to NEMURO. In the uncoupled mode, the growth and weight of an individual fish is computed using plankton densities simulated by NEMURO but with no feedback between fish consumption and plankton mortality. In the coupled mode, the feeding, growth and weight of a representative fish are computed, and prey removals due to feeding by fish appear as mortality terms on the prey. The NEMURO family of models continues to evolve, including effects of the microbial loop and iron limitation at lower trophic levels, and full life cycle, multi-species and multi-generational simulations at higher trophic levels. We outline perspectives for future end-to-end modeling efforts that can be used to study marine ecosystems in response to global environmental change.  相似文献   
198.
The asteroid 4 Vesta is one of the very few heavenly bodies to have been linked to samples on Earth: the howardite‐eucrite‐diogenite (HED) meteorite suite. This large and diverse suite of meteorites provides a detailed picture of Vesta's igneous and postigneous history. We have used the range of igneous rock types and compositions in the HED suite to test a series of chemical models for solidification processes following peak melting (magma ocean) conditions on Vesta. Fractional crystallization cannot have been a dominant early process in the magma ocean because it leads to excessive Fe‐enrichment in the melt. Models that are dominated by equilibrium crystallization cannot produce orthopyroxene cumulates (diogenites). Our best models invoke 60–70% equilibrium crystallization of a magma ocean followed by continuous extraction of the residual melt into shallow magma chambers. Fractional crystallization in these magma chambers combined with continuous or periodic addition of more melt from the slowly compacting crystal mush (magmatic recharge) can produce all of the igneous HED lithologies (noncumulate and cumulate eucrites, diogenites, dunites, harzburgites, and olivine diogenites). Magmatic recharge can also explain the narrow range in eucrite compositions and the variability of incompatible trace element concentrations in diogenites. We predict an internal structure for Vesta that permits excavation of the HEDs during the formation of the Rheasilvia basin, while remaining consistent with observations from the Dawn mission and most impact models.  相似文献   
199.
Gas phase transport according to chemical fluid transport (CFT) in Earth's crust as well as in the solar nebula is characterized by very high transport efficiency. Systematic investigations of mobilization, transport and deposition of gaseous MeX (Me = metal, X = F or Cl) compounds by solid gas equilibrium reactions are suitable to explain numerous extensive accumulations of minerals and ores. More than 40 of the considered chemical elements form volatile MeX compounds. Some elements tend to form MeF compounds, whereas others are more likely to form MeCl compounds. Silicon reacts with HF to form SiF4 and replaces other elements to form MeF compounds at low temperature ranges. Accumulations caused by SiF4 transport explain the formation of numerous quartz varieties and silicate minerals in Earth's crust. Iron most likely reacts with HCl to form FeCl2 as well as FeCl3 and explain the formation of iron or iron compounds. Thermodynamically directed transport from cool to hot areas in connection with cyclic processes increases the transport efficiency of MeX-species. Such species are SiF4, Al2F6, POF3, Cu3Cl3, SnCl4, BF3, GeF4, GeCl4, Ga2Cl6, ZrF4, NbF5 and TiF4. The transport gases SiF4 and POF3 often react with environmental compounds forming pneumatolytic and metasomatical mineral accumulations. CFT is the “motor” of pneumatolytic and metasomatical processes.  相似文献   
200.
Numerous ordered defect structures are known that are related to the sodium chloride (or MgO) structure type, thus they are basically cubic closest packed (ccp) arrangements with vacancies. For example the NbO type is an MgO type in which one quarter each of the anions and the cations are missing compared to the ccp in such a way that both anions and cations are in square-planar coordination. In spinel, Al2MgO4, one half of the octahedrally coordinated cations are missing compared with the MgO type and only one eighth of the tetrahedrally coordinated sites within the ccp are occupied. What these cases have in common is that all these derivatives are rather dense. This is different in pharmacosiderite, K[Fe4(OH)4As3O12]. 6 to 7H2O, where one half of the anion positions, three quarters of the octahedral sites and five eighth of the tetrahedral sites remain vacant, compared to the spinel type. Pharmacosiderite is a wide open porous structure with zeolitic properties. We are illustrating these relationships using a Bärnighausen symmetry tree and by tables relating the various structure types to each other.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号