首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   520篇
  免费   17篇
  国内免费   4篇
测绘学   18篇
大气科学   57篇
地球物理   93篇
地质学   165篇
海洋学   67篇
天文学   70篇
综合类   1篇
自然地理   70篇
  2021年   7篇
  2020年   6篇
  2019年   9篇
  2018年   9篇
  2017年   17篇
  2016年   20篇
  2015年   11篇
  2014年   19篇
  2013年   48篇
  2012年   18篇
  2011年   25篇
  2010年   23篇
  2009年   28篇
  2008年   23篇
  2007年   15篇
  2006年   26篇
  2005年   9篇
  2004年   22篇
  2003年   21篇
  2002年   15篇
  2001年   13篇
  2000年   11篇
  1999年   17篇
  1998年   8篇
  1997年   6篇
  1996年   4篇
  1995年   6篇
  1994年   5篇
  1993年   6篇
  1992年   3篇
  1991年   3篇
  1990年   6篇
  1989年   3篇
  1988年   3篇
  1987年   9篇
  1986年   6篇
  1985年   10篇
  1984年   10篇
  1983年   6篇
  1982年   2篇
  1981年   4篇
  1980年   6篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1973年   3篇
  1920年   1篇
排序方式: 共有541条查询结果,搜索用时 328 毫秒
91.
Almost all engineering evacuation models define the objective as minimizing the time required to clear the region or total travel time, thus making an implicit assumption that who will or should evacuate is known. Conservatively evacuating everyone who may be affected may be the best strategy for a given storm, but there is a growing recognition that in some places that strategy is no longer viable and in any case, may not be the best alternative by itself. Here, we introduce a new bi-level optimization that reframes the decision more broadly. The upper level develops an evacuation plan that describes, as a hurricane approaches, who should stay and who should leave and when, so as to minimize both risk and travel time. The lower level is a dynamic user equilibrium (DUE) traffic assignment model. The model includes four novel features: (1) it refocuses the decision on the objectives of minimizing both risk and travel time; (2) it allows direct comparison of more alternatives, including for the first time, sheltering-in-place; (3) it uses a hurricane-scenario-based analysis that explicitly represents the critically important uncertainty in hurricane track, intensity, and speed; and (4) it includes a new DUE algorithm that is efficient enough for full-scale hurricane evacuation applications. The model can be used both to provide an evacuation plan and to evaluate a plan’s performance in terms of risk and travel time, assuming the plan is implemented and a specified hurricane scenario then actually occurs. We demonstrate the model with a full-scale case study for Eastern North Carolina.  相似文献   
92.
This paper presents the study of parasite remains recovered in pollen samples collected from archaeological layers. Laboratory treatment enabled us to obtain very high concentrations of both pollen and parasite eggs from the same samples. The case study of the site of Piazza Garibaldi in Parma, a town in the Po plain, is reported. The site was a sacred area in Roman times and a market square in Medieval times (10th–11th century A.D.). Pollen, seeds, and fruits from the latter phase were collected from four Medieval pits and one cesspit. After a palynological treatment including sieving, floating, and light acetolysis, abundant quantities of parasite eggs were extracted. Human and animal parasite eggs belonging to Trichuris, Ascaris, Taenia/Echinococcus, Capillaria, Dicrocoelium, and Diphyllobothrium were found. The analyses of animal and plant remains identified in the same samples suggested that the pit infillings consisted of waste, human and animal excrements, deteriorated plant food, and refuse of grapes. Therefore, parasite remains help the interpretation of archaeobotanical data in identifying human behaviors and site functions.  相似文献   
93.
The Triassic?Jurassic (Tr?J) boundary marks a major extinction event, which (~200 Ma) resulted in global extinctions of fauna and flora both in the marine and terrestrial realms. There prevail great challenges in determining the exact location of the terrestrial Tr?J boundary, because of endemism of taxa and the scarcity of fossils in terrestrial settings leading to difficulties in linking marine and terrestrial sedimentary successions. Investigation based on palynology and bivalves has been carried out over a 1113 m thick section, which is subdivided into 132 beds, along the Haojiagou valley on the southern margin of the Junggar Basin of the northern Xinjiang, northwestern China. The terrestrial Lower Jurassic is conformably resting on the Upper Triassic strata. The Upper Triassic covers the Huangshanjie Formation overlaid by the Haojiagou Formation, while the Lower Jurassic comprises the Badaowan Formation followed by the Sangonghe Formation. Fifty six pollen and spore taxa and one algal taxon were identified from the sediments. Based on the key-species and abundance of spores and pollen, three zones were erected: the Late Triassic (Rhaetian) Aratrisporites?Alisporites Assemblage, the Early Jurassic (Hettangian) Perinopollenites?Pinuspollenites Assemblage, and the Sinemurian Perinopollenites?Cycadopites Assemblage. The Tr?J boundary is placed between bed 44 and 45 coincident with the boundary between the Haojiagou and Badaowan formations. Beds with Ferganoconcha (?), Unio?Ferganoconcha and Waagenoperna?Yananoconcha bivalve assemblages are recognized. The Ferganoconcha (?) bed is limited to the upper Haojiagou Formation, Unio?Ferganoconcha and Waagenoperna?Yananoconcha assemblages are present in the middle and upper members of the Badaowan Formation. The sedimentary succession is interpreted as terrestrial with two mainly lake deposit intervals within Haojiagou and Badaowan formations, yielding fresh water algae and bivalves. However, the presence of brackish water algae Tasmanites and the marine?littoral facies bivalve Waagenoperna from the Badaowan Formation indicate that the Junggar Basin was influenced by sea water caused by transgressions from the northern Tethys, during the Sinemurian.  相似文献   
94.
The presence of arsenic (As) in groundwater and its effect on human health has become an issue of serious concern in recent years. The present study assessed the groundwater quality of the Bishnupur District, Manipur, with respect to drinking water standards. Higher concentrations of pH, iron and phosphate were observed at several locations. Phosphate and iron levels were highest in the pre-monsoon, followed by monsoon and post-monsoon seasons. The arsenic concentrations were highest during post-monsoon (1–200 μg L−1) as compared to pre-monsoon (1–108 μg L−1) and monsoon (2–99 μg L−1). Kwakta and Ngakhalawai show higher levels of arsenic concentration as compared to the prescribed World Health Organization (WHO) and Bureau of Indian Standards (BIS) norms. Arsenic showed a strong positive correlation with phosphate and negative correlation with sulphate, suggesting a partial influence of anthropogenic sources. The study suggests that the Bishnupur area has an arsenic contamination problem, which is expected to increase in the near future.  相似文献   
95.
96.
The asteroid 4 Vesta is one of the very few heavenly bodies to have been linked to samples on Earth: the howardite‐eucrite‐diogenite (HED) meteorite suite. This large and diverse suite of meteorites provides a detailed picture of Vesta's igneous and postigneous history. We have used the range of igneous rock types and compositions in the HED suite to test a series of chemical models for solidification processes following peak melting (magma ocean) conditions on Vesta. Fractional crystallization cannot have been a dominant early process in the magma ocean because it leads to excessive Fe‐enrichment in the melt. Models that are dominated by equilibrium crystallization cannot produce orthopyroxene cumulates (diogenites). Our best models invoke 60–70% equilibrium crystallization of a magma ocean followed by continuous extraction of the residual melt into shallow magma chambers. Fractional crystallization in these magma chambers combined with continuous or periodic addition of more melt from the slowly compacting crystal mush (magmatic recharge) can produce all of the igneous HED lithologies (noncumulate and cumulate eucrites, diogenites, dunites, harzburgites, and olivine diogenites). Magmatic recharge can also explain the narrow range in eucrite compositions and the variability of incompatible trace element concentrations in diogenites. We predict an internal structure for Vesta that permits excavation of the HEDs during the formation of the Rheasilvia basin, while remaining consistent with observations from the Dawn mission and most impact models.  相似文献   
97.
For the utilization of deep saline aquifers in the frame of geotechnical use, such as geological sequestration of CO2, H2 or energy storage, a baseline characterization of pristine reservoir rock cores is required to monitor changes in the indigenous microbial communities and pore fluids, and to study alterations in rock characteristics resulting from interaction with geological storage technologies. However, drilling procedures and technical fluids, particularly drill mud, are sources of core contamination. To measure the penetration of drill mud into the cores, three tracers (fluorescein, microspheres, and 4′,6-diamidino-2-phenylindole stained bacteria) were tested under laboratory conditions. The flow of drill mud into core samples was induced by applying uniaxial pressure differentials to the core, and the penetration depth was microscopically determined for each tracer. Fluorescein was extracted from the rock samples and quantified fluorometrically. The results indicate that all tested tracers are suitable for tracking drill-mud penetration. The actual penetration depth seems to be related to differences in mineral composition and texture as well as microfractures. Among all tested tracers, fluorescein labelling is the simplest, cheapest and most accurate method for analyzing the contamination of rock cores by technical fluids. The application of this tracer was successfully applied during two deep drilling campaigns at the CO2 storage pilot site in Ketzin, Germany. The results highlight that the use of tracers is indispensable to ensure the quality of core samples for microbiological and biogeochemical analysis.  相似文献   
98.
99.
The influence of model dimensionality on predictions of mass recovery from dense non-aqueous phase liquid (DNAPL) source zones in nonuniform permeability fields was investigated using a modified version of the modular three-dimensional transport simulator (MT3DMS). Thirty-two initial two- (2D) and three-dimensional (3D) tetrachloroethene–DNAPL source zone architectures, taken from a recent modeling study, were used as initial conditions for this analysis. Commonly employed source zone metrics were analyzed to determine differences between 2D and 3D predictions: (i) down-gradient flux-averaged contaminant concentration, (ii) reductions in contaminant mass flux through a down-gradient boundary, (iii) source zone ganglia-to-pool (GTP) ratio, and (iv) time required to achieve a remediation objective. 3D flux-averaged contaminant concentrations were approximately 3.5 times lower than concentrations simulated in 2D. This difference was attributed to dilution of the contaminant concentrations down gradient of the source zone. Contaminant flux reduction predictions for a given mass recovery were generally 5% higher in 3D simulations than in 2D simulations. The GTP ratio declined over time as mass was recovered in both 2D and 3D simulations. Although the source longevity (i.e., time required to achieve 99.99% mass recovery) differed between individual 2D and 3D realizations, the mean source longevity for the 2D and 3D simulation ensembles was within 2%. 2D simulations tended to over-predict the time required to achieve lower mass recovery levels (e.g. 50% mass recovery) due to a smaller contaminated area exposed to uncontaminated water. These findings suggest that ensemble averages of 2D numerical simulations of DNAPL migration, entrapment, dissolution, and mass recovery in statistically homogenous, nonuniform media may provide reasonable approximations to average behavior obtained using simulations conducted in fully three-dimensional domains.  相似文献   
100.
Landslide inventory maps are necessary for assessing landslide hazards and addressing the role slope stability plays in landscape evolution over geologic timescales. However, landslide inventory maps produced with traditional methods — aerial photograph interpretation, topographic map analysis, and field inspection — are often subjective and incomplete. The increasing availability of high-resolution topographic data acquired via airborne Light Detection and Ranging (LiDAR) over broad swaths of terrain invites new, automated landslide mapping procedures. We present two methods of spectral analysis that utilize LiDAR-derived digital elevation models of the Puget Sound lowlands, Washington, and the Tualatin Mountains, Oregon, to quantify and automatically map the topographic signatures of deep-seated landslides. Power spectra produced using the two-dimensional discrete Fourier transform and the two-dimensional continuous wavelet transform identify the characteristic spatial frequencies of deep-seated landslide morphologic features such as hummocky topography, scarps, and displaced blocks of material. Spatial patterns in the amount of spectral power concentrated in these characteristic frequency bands highlight past slope instabilities and allow the delineation of landslide terrain. When calibrated by comparison with detailed, independently compiled landslide inventory maps, our algorithms correctly classify an average of 82% of the terrain in our five study areas. Spectral analysis also allows the creation of dominant wavelength maps, which prove useful in analyzing meter-scale topographic expressions of landslide mechanics, past landslide activity, and landslide-modifying geomorphic processes. These results suggest that our automated landslide mapping methods can create accurate landslide maps and serve as effective, objective, and efficient tools for digital terrain analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号