首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33006篇
  免费   5811篇
  国内免费   7896篇
测绘学   2597篇
大气科学   6817篇
地球物理   8126篇
地质学   16041篇
海洋学   3914篇
天文学   1382篇
综合类   3612篇
自然地理   4224篇
  2024年   175篇
  2023年   573篇
  2022年   1483篇
  2021年   1754篇
  2020年   1395篇
  2019年   1654篇
  2018年   1794篇
  2017年   1646篇
  2016年   1928篇
  2015年   1677篇
  2014年   2060篇
  2013年   1929篇
  2012年   1872篇
  2011年   1946篇
  2010年   2061篇
  2009年   1919篇
  2008年   1789篇
  2007年   1683篇
  2006年   1316篇
  2005年   1242篇
  2004年   942篇
  2003年   947篇
  2002年   907篇
  2001年   940篇
  2000年   1085篇
  1999年   1479篇
  1998年   1186篇
  1997年   1124篇
  1996年   1037篇
  1995年   908篇
  1994年   788篇
  1993年   712篇
  1992年   563篇
  1991年   450篇
  1990年   330篇
  1989年   310篇
  1988年   270篇
  1987年   150篇
  1986年   143篇
  1985年   95篇
  1984年   99篇
  1983年   75篇
  1982年   65篇
  1981年   58篇
  1980年   41篇
  1979年   34篇
  1978年   11篇
  1977年   11篇
  1976年   6篇
  1958年   30篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
This paper investigates possible warming effects of an E1 Nifio event on the sea surface temperature anomaly (SSTA) in the northwestern Indian Ocean. Most pure positive Indian Ocean dipole (IOD) events (without an E1 Nifio event co-occurring) have a maximum positive SSTA mainly in the central Indian Ocean south of the equator, while most co-occurrences with an E1 Nifio event exhibit a northwest-southeast typical dipole mode. It is therefore inferred that warming in the northwestern Indian Ocean is closely related to the E1 Nifio event. Based on the atmospheric bridge theory, warming in the northwestern Indian Ocean during co-occurring cases may be primarily caused by relatively less latent heat loss from the ocean due to reduced wind speed. The deepened thermocline also contributes to the warming along the east coast of Africa through the suppressed upwelling of the cold water. Therefore, the E1 Nifio event is suggested to have a modulating effect on the structure of the dipole mode in the tropical Indian Ocean.  相似文献   
972.
五台山站历史气候资料的均一性分析   总被引:2,自引:0,他引:2  
介绍了新一代天气雷达实时监测系统的结构模式和功能,通过TCP/IP通信协议的论述、天气雷达信息量和占用信道带宽的估算,证明基于宽带网络系统通信设计的可行性.同时详细分析了CINRAD/SA天气雷达实时监测信息的结构和存放特点,系统地描述天气雷达监测信息获取、传送和入库的方法,并重点介绍如何编制传输和入库软件,利用TCP/IP两种基本协议(TCP和UDP)以及ADO数据库编程技术,在现有的宽带网络基础上,对天气雷达运行状况实现远程实时监测.  相似文献   
973.
A fully coupled regional ocean-atmosphere model system that consists of the regional spectral model and the regional ocean modeling system for atmosphere and ocean components, respectively, is applied to downscale the present climate (1985–1994) over California from a global simulation of the Community Climate System Model 3.0 (CCSM3). The horizontal resolution of the regional coupled modeling system is 10 km, while that of the CCSM3 is at a spectral truncation of T85 (approximately 1.4°). The effects of the coupling along the California coast in the boreal summer and winter are highlighted. Evaluation of the sea surface temperature (SST) and 2-m air temperature climatology shows that alleviation of the warm bias along the California coast in the global model output is clear in the regional coupled model run. The 10-m wind is also improved by reducing the northwesterly winds along the coast. The higher resolution coupling effect on the temperature and specific humidity is the largest near the surface, while the significant impact on the wind magnitude appears at a height of approximately 850-hPa heights. The frequency of the Catalina Eddy and its duration are increased by more than 60 % in the coupled downscaling, which is attributed to enhanced offshore sea-breeze. Our study indicates that coupling is vital to regional climate downscaling of mesoscale phenomena over coastal areas.  相似文献   
974.
A previous multiple-AGCM study suggested that Indian Ocean Warming (IOW) tends to warm and weaken the southern polar vortex.Such an impact is robust because of a qualitative consistency among the five AGCMs used.However,a significant difference exists in the modeled strengths,particularly in the stratosphere,with those in three of the AGCMs (CCM3,CAM3,and GFS) being four to five times as strong as those in the two other models (GFDL AM2,ECHAM5).As to which case reflects reality is an important issue not only for quantifying the role of tropical ocean warming in the recent modest recovery of the ozone hole over the Antarctic,but also for projecting its future trend.This issue is addressed in the present study through comparing the models' climatological mean states and intrinsic variability,particularly those influencing tropospheric signals to propagate upward and reach the stratosphere.The results suggest that differences in intrinsic variability of model atmospheres provide implications for the difference.Based on a comparison with observations,it is speculated that the impact in the real world may be closer to the modest one simulated by GFDL AM2 and ECHAM5,rather than the strong one simulated by the three other models (CCM3,CAM3 and GFS).In particular,IOW during the past 50 years may have dynamically induced a 1.0℃ warming in the polar lower stratosphere (~100 hPa),which canceled a fraction of radiative cooling due to ozone depletion.  相似文献   
975.
This study examines a future climate change scenario over California in a 10-km coupled regional downscaling system of the Regional Spectral Model for the atmosphere and the Regional Ocean Modeling System for the ocean forced by the global Community Climate System Model version 3.0 (CCSM3). In summer, the coupled and uncoupled downscaled experiments capture the warming trend of surface air temperature, consistent with the driving CCSM3 forcing. However, the surface warming change along the California coast is weaker in the coupled downscaled experiment than it is in the uncoupled downscaling. Atmospheric cooling due to upwelling along the coast commonly appears in both the present and future climates, but the effect of upwelling is not fully compensated for by the projected large-scale warming in the coupled downscaling experiment. The projected change of extreme warm events is quite different between the coupled and uncoupled downscaling experiments, with the former projecting a more moderate change. The projected future change in precipitation is not significantly different between coupled and uncoupled downscaling. Both the coupled and uncoupled downscaling integrations predict increased onshore sea breeze change in summer daytime and reduced offshore land breeze change in summer nighttime along the coast from the Bay area to Point Conception. Compared to the simulation of present climate, the coupled and uncoupled downscaling experiments predict 17.5 % and 27.5 % fewer Catalina eddy hours in future climate respectively.  相似文献   
976.
This paper reviews recent progress in the development of the Beijing Climate Center Climate System Model(BCC-CSM) and its four component models(atmosphere,land surface,ocean,and sea ice).Two recent versions are described:BCC-CSM1.1 with coarse resolution(approximately 2.8125°×2.8125°) and BCC-CSM1.1(m) with moderate resolution(approximately 1.125°×1.125°).Both versions are fully coupled climate-carbon cycle models that simulate the global terrestrial and oceanic carbon cycles and include dynamic vegetation.Both models well simulate the concentration and temporal evolution of atmospheric CO_2 during the 20th century with anthropogenic CO2 emissions prescribed.Simulations using these two versions of the BCC-CSM model have been contributed to the Coupled Model Intercomparison Project phase five(CMIP5) in support of the Intergovernmental Panel on Climate Change(IPCC) Fifth Assessment Report(AR5).These simulations are available for use by both national and international communities for investigating global climate change and for future climate projections.Simulations of the 20th century climate using BCC-CSMl.l and BCC-CSMl.l(m) are presented and validated,with particular focus on the spatial pattern and seasonal evolution of precipitation and surface air temperature on global and continental scales.Simulations of climate during the last millennium and projections of climate change during the next century are also presented and discussed.Both BCC-CSMl.l and BCC-CSMl.l(m) perform well when compared with other CMIP5 models.Preliminary analyses indicate that the higher resolution in BCC-CSM1.1(m) improves the simulation of mean climate relative to BCC-CSMl.l,particularly on regional scales.  相似文献   
977.
A nonlinear numerical model is developed for turbulent boundary-layer flowover a train of water waves of finite amplitude or slope. The airflow isassumed to be steady, two-dimensional, and neutrally-stratified. The wavesurface is assumed to be aerodynamically rough and flow conditions at thewave surface are prescribed. The numerical model used in this study adoptsthree turbulence closure schemes with different degrees of physicalcompleteness. Two of these are second-order schemes, whichare believed to describe turbulent flow more completely than thesimpler closures used in most previous studies. Although models with all turbulence closures agree qualitatively in the prediction of the amplitude of the surface normal stress perturbation, the lower- and higher-order closures differ significantly in predictions of phase, and hence the form drag and energy transfer rate between wind and waves. Our model results are in reasonable agreement with field and laboratory measurements, although predicted energy transfer rates are generally at the low end of the range of experimental values. Cases with airflow at various angles to the wave direction are also considered.  相似文献   
978.
采用车贝雪夫正交多项式分解方法展开重庆地区夏季降水场, 揭示了最近40年来重庆地区夏季降水时空分布特征.研究结果表明:大部分年份重庆各地夏季降水变化趋势一致; 近40年来重庆地区夏季降水80年代中期以前有增加趋势,而80年代后期至今则有减少趋势, 洪涝灾害主要集中发生在80年代,70年代干旱姓频繁,从80年代末期开始至今,重庆地区又进入了一个干旱的相对高发期.  相似文献   
979.
采用多分辨小波分析对卫星图象进行预处理 ,在保留其特征信息的同时 ,减小了数据量 ,改善了神经网络训练过程的收敛性能 ,提高了处理速度。采用这一方法根据 GOES- 8的红外亮温图象和气象雷达资料对巴西圣保罗州中部的降水量估计进行了试验 ,取得了良好的效果。  相似文献   
980.
The general circulation model (GCM) used in this study includes a prognostic cloud scheme and a rather detailed radiation scheme. In a preceding paper, we showed that this model was more sensitive to a global perturbation of the sea surface temperatures than most other models with similar physical parametrization. The experiments presented here show how this feature might depend on some of the cloud modelling assumptions. We have changed the temperature at which the water clouds are allowed to become ice clouds and analyzed separately the feedbacks associated with the variations of cloud cover and cloud radiative properties. We show that the feedback effect associated with cloud radiative properties is positive in one case and negative in the other. This can be explained by the elementary cloud radiative forcing and has implications concerning the use of the GCMs for climate sensitivity studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号