首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   7篇
  国内免费   1篇
测绘学   1篇
大气科学   9篇
地球物理   39篇
地质学   49篇
海洋学   12篇
天文学   7篇
综合类   1篇
自然地理   12篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   2篇
  2017年   6篇
  2016年   9篇
  2015年   3篇
  2014年   3篇
  2013年   8篇
  2012年   11篇
  2011年   3篇
  2010年   4篇
  2009年   7篇
  2008年   7篇
  2007年   3篇
  2006年   6篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有130条查询结果,搜索用时 62 毫秒
91.
We experimentally investigated the phase relations of a peralkaline phonolitic dyke rock associated with the Ilímaussaq plutonic complex (South Greenland). The extremely evolved and iron-rich composition (magnesium number = 2, alkalinity index = 1.44, FeO* = 12 wt%) may represent the parental magma of the Ilímaussaq complex. This dyke rock is therefore perfectly suited for performing phase-equilibrium experiments, since in contrast to the plutonic rocks of the complex, no major cumulate formation processes complicate defining a reasonable starting composition. Experiments were carried out in hydrothermal rapid-quench cold-seal pressure vessels at P = 100 MPa and T = 950–750 °C. H2O contents ranging from anhydrous to H2O saturated (~5 wt% H2O) and varying fO2 (~ΔlogFMQ ?3 to +1; where FMQ represents the fayalite–magnetite–quartz oxygen buffer) were applied. Reduced and dry conditions lead to substantial crystallization of alkali feldspar, nepheline, hedenbergite-rich clinopyroxene, fayalite-rich olivine and minor amounts of ulvøspinel-rich magnetite, which represent the phenocryst assemblage of the natural dyke rock. Oxidized and H2O-rich conditions, however, suppress the crystallization of olivine in favor of magnetite and clinopyroxene with less or no alkali feldspar and nepheline formation. Accordingly, combined low fO2 and aH2O force the evolution of the residual melt toward decreasing SiO2, increasing FeO* and alkalinity index (up to 3.55). On the contrary, high fO2 and aH2O produce residual melts with relatively low FeO*, high SiO2 and a relatively constant alkalinity index. We show that variations of aH2O and fO2 lead to contrasting trends regarding the liquid lines of descent of iron-rich silica-undersaturated peralkaline compositions. Moreover, the increase in FeO* and alkalinity index (reduced and dry conditions) in the residual melt is an important prerequisite to stabilize late-magmatic minerals of the dyke rock, for example, aenigmatite (Na2Fe5TiSi6O20), coexisting with the most evolved melts at 750 °C. Contrary to what might be expected, experiments with high aH2O and interlinked high fO2 exhibit higher liquidus T’s compared with experiments performed at low aH2O and fO2 for experiments where magnetite is liquidus phase. This is because ulvøspinel-poor magnetite crystallizes at higher fO2 and has a higher melting point than ulvøspinel-rich magnetite, which is favored at lower fO2.  相似文献   
92.
93.
94.
The diagenetic history of the Ediacaran sedimentary rocks in the East European Craton (EEC) over the area extending from Arkhangelsk (Russia) in the north to Podolia (Ukraine) in the south was revealed by means of the XRD characterization and K–Ar dating of clay fractions, mudstone porosity measurements and organic geochemistry investigations. Mudstone porosity measurements produced direct evidence of shallow maximum burial of the Ediacaran sediments on the craton (Russia, Lithuania, Belarus, Volyn), not exceeding 1.5 km, and much deeper burial at the cratonic margin, in Podolia and Poland. In general, illitization of smectite and biomarker indices indicates more advanced diagenesis at the cratonic margin. K–Ar dating of authigenic illite–smectite and aluminoceladonite revealed the Palaeozoic age of mineral diagenesis (ca. 450–300 Ma) both on the craton and its margin, with older ages generally observed in the north. When the maximum palaeotemperatures were evaluated from illite–smectite and biomarkers, based on the calibrations from the conventional burial diagenetic sections, a major mismatch was detected for the cratonic area: 100°C–130°C from illite––smectite and tens of oC lower from the lipid biomarkers. This diagenetic pattern was interpreted as the result of short‐lasting (in ky scale) pulses of potassium‐bearing hot fluids migrating from the Caledonian and Variscan orogens deep in the craton interior, effectively promoting illitization in porous rocks without altering the organic matter. Analogous short pulses of fluids were responsible for numerous diagenetic phenomena, including Mississippi Valley‐Type ore deposits, in the American Midwest, in front of the Appalachians. K–Ar dating indicates that the entire Proterozoic sedimentary cover of the Great Unconformity on the EEC remained untouched by measureable post‐sedimentary changes until the early Palaeozoic, thus for over 1000 My, which is an unprecedented finding.  相似文献   
95.
96.
The crenulated geometry of the Southeast Indian ridge within the Australian-Antarctic discordance is formed by numerous spreading ridge segments that are offset, alternately to the north and south, by transform faults. Suggested causes for these offsets, which largely developed since ~ 20 Ma, include asymmetric seafloor spreading, ridge jumps, and propagating rifts that have transferred seafloor from one flank of the spreading ridge to the other. Each of these processes has operated at different times in different locations of the discordance; here we document an instance where a small (~ 20 km), young (< 0.2 Ma), southward ridge jump has contributed to the observed asymmetry. When aeromagnetic anomalies from the Project Investigator-1 survey are superposed on gravity anomalies computed from Geosat GM and ERM data, we find that in segment B4 of the discordance (between 125° and 126° E), the roughly east-west-trending gravity low, correlated with the axial valley, is 20–25 km south of the ridge axis position inferred from the center of magnetic anomaly 1. Elsewhere in the discordance, the inferred locations of the ridge axis from magnetics and gravity are in excellent agreement. Ship track data confirm these observations: portions of Moana Wave track crossing the ridge in B4 show that a topographic valley correlated with the gravity anomaly low lies south of the center of magnetic anomaly 1; while other ship track data that cross the spreading ridge in segments B3 and B5 demonstrate good agreement between the axial valley, the gravity anomaly low, and the central magnetic anomaly. Based on these observations, we speculate that the ridge axis in B4 has recently jumped to the south, from a ridge location closer to the center of the young normally magnetized crust, to that of the gravity anomaly low. The position of the gravity low essentially at the edge of normally magnetized crust requires a very recent (< 0.2 Ma) arrival of the ridge in this new location. Because this ridge jump is so young, it may be a promising location for future detailed studies of the dynamics, kinematics, and thermal effects of ridge jumps.The U.S. Government right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   
97.
Spatial data were used to develop complex characteristics of a high-mountain karst. The numeric elaboration was conducted using the analytical capabilities of GIS software. Analysis was based on spatial data gained by elaborating aerial photography. The results were presented in map sets, as well as Geographic Information System format. The set of matched numerical methods used and the proposed algorithm for data analysis may be applied at other karst sites.  相似文献   
98.
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号