首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   7篇
  国内免费   1篇
测绘学   1篇
大气科学   9篇
地球物理   39篇
地质学   49篇
海洋学   12篇
天文学   7篇
综合类   1篇
自然地理   12篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   2篇
  2017年   6篇
  2016年   9篇
  2015年   3篇
  2014年   3篇
  2013年   8篇
  2012年   11篇
  2011年   3篇
  2010年   4篇
  2009年   7篇
  2008年   7篇
  2007年   3篇
  2006年   6篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有130条查询结果,搜索用时 46 毫秒
71.
Mean latitude variations computed by Orlovs or other filters have some irregular variations in addition to secular ones. These are of the order of ±0.05 to ±0.1, they can last several years and sometimes show regional similarities. In looking for an explanation of such latitude variations several physical mechanisms have been investigated. The most probable one is the mechanism of stress propagation in the lithosphere and asthenosphere. The consequent gravitational and deformational effects could explain both the magnitude and the time dependance of the irregular latitude variations.  相似文献   
72.
An attempt is made to integrate biozones based on planktic Foraminifera with those on calcareous nannofossils, mainly on first order correlation. An approximate correlation with ammonite zones, magnetic events and radiometric age values, partly on first-order data, partly from the literature, is added.  相似文献   
73.
74.
Travertine deposits of calcium carbonate can dominate channel geomorphology in streams where travertine deposition creates a distinct morphology characterized by travertine terraces, steep waterfalls, and large pools. Algae and microorganisms can facilitate travertine deposition, but how travertine affects material and energy flow in stream ecosystems is less well understood. Nearly a century of flow diversion for hydropower production has decimated the natural travertine formations in Fossil Creek, Arizona. The dam will be decommissioned in 2005. Returning carbonate-rich spring water to the natural stream channel should promote travertine deposition. How will the recovery of travertine affect the ecology of the creek? To address this question, we compared primary production, decomposition, and the abundance and diversity of invertebrates and fish in travertine and riffle/run reaches of Fossil Creek, Arizona. We found that travertine supports higher primary productivity, faster rates of leaf litter decomposition, and higher species richness of the native invertebrate assemblage. Observations from snorkeling in the stream indicate that fish density is also higher in the travertine reach. We postulate that restoring travertine to Fossil Creek will increase stream productivity, rates of litter processing, and energy flow up the food web. Higher aquatic productivity could fundamentally shift the nature of the stream from a sink to a source of energy for the surrounding terrestrial landscape.  相似文献   
75.
Gully erosion is one of the greatest natural hazards in the loess areas of E. (Eastern) Poland. At the same time, permanent gullies are a major tourist attraction and can provide a basis for the development of geotourism. The study objective was to assess the possibilities of using the loess gullies for educational purposes. Detailed studies were conducted within the municipality of Kazimierz Dolny, an area with an extremely high concentration of permanent gullies. The questionnaire survey of students and tourists (nearly 300 surveys were completed) showed that the respondents’ knowledge of geomorphology was limited, despite their familiarity with gullies. In most cases, they were unable to accurately identify the determinants of gully erosion, its negative effects and methods for preventing it. An assessment of the tourism and geotourism potential of the municipality made it possible to identify the sites (gullies) that can perform an educational function, with regard to gully erosion. The establishment of the Ma?opolska Vistula Gap Geopark, whose highlights will include numerous loess gullies, can pave the way for the development of geotourism.  相似文献   
76.
Although soil processes affect the timing and amount of streamflow generated from snowmelt, they are often overlooked in estimations of snowmelt‐generated streamflow in the western USA. The use of a soil water balance modelling approach to incorporate the effects of soil processes, in particular soil water storage, on the timing and amount of snowmelt generated streamflow, was investigated. The study was conducted in the Reynolds Mountain East (RME) watershed, a 38 ha, snowmelt‐dominated watershed in southwest Idaho. Snowmelt or rainfall inputs to the soil were determined using a well established snow accumulation and melt model (Isnobal). The soil water balance model was first evaluated at a point scale, using periodic soil water content measurements made over two years at 14 sites. In general, the simulated soil water profiles were in agreement with measurements (P < 0·05) as further indicated by high R2 values (mostly > 0·85), y‐intercept values near 0, slopes near 1 and low average differences between measured and modelled values. In addition, observed soil water dynamics were generally consistent with critical model assumptions. Spatially distributed simulations over the watershed for the same two years indicate that streamflow initiation and cessation are closely linked to the overall watershed soil water storage capacity, which acts as a threshold. When soil water storage was below the threshold, streamflow was insensitive to snowmelt inputs, but once the threshold was crossed, the streamflow response was very rapid. At these times there was a relatively high degree of spatial continuity of satiated soils within the watershed. Incorporation of soil water storage effects may improve estimation of the timing and amount of streamflow generated from mountainous watersheds dominated by snowmelt. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
77.
Comparing single beam and multibeam echo sounder data where surveys overlap we find that: 95% of multibeam measurements are repeatable to within 0.47% of depth; older single beam data can be at least as accurate as multibeam; single beam and multibeam profiles show excellent agreement at full-wavelengths longer than 4 km; archival sounding errors are not Gaussian; 95% of archival soundings in the northwest Atlantic are accurate to within 1.6% of depth; the 95th percentile error is about five times greater in pre-1969 data than in post-1968 data; many of the largest errors are located over large seafloor slopes, where small navigation errors can lead to large depth errors. Our uncertainty model has the form σ 2 = a 2 + (bz)2 + (cs)2, where 2σ is approximately the 95th percentile error, z is the depth, s is the slope, and a, b, c are constants we determine separately for pre-1969 and post-1968 data.  相似文献   
78.
The study has analyzed influence of an atmospheric circulation on urban heat island (UHI) and urban cold island (UCI) in Poznań. Analysis was conducted on the basis of temperature data from two measurement points situated in the city center and in the ?awica airport (reference station) and the data concerning the air circulation (Nied?wied?’s calendar of circulation types and reanalysis of National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR)). The cases with UHI constitute about 85 % of all data, and UCI phenomena appear with a frequency of 14 % a year. The intensity of UHI phenomenon is higher in the anticyclonic circulation types. During the year in anticyclonic circulation, intensity of UHI is 1.2 °C on average while in cyclonic is only 0.8 °C. The occurring of UHI phenomena is possible throughout all seasons of the year in all hours of the day usually in anticyclonic circulation types. The cases with highest UHI intensity are related mostly to nighttime. The cases of UCI phenomena occurred almost ever on the daytime and the most frequently in colder part of the year together with cyclonic circulation. Study based on reanalysis data indicates that days with large intensity of UHI (above 4, 5, and 6 °C) are related to anticyclonic circulation. Anticyclonic circulation is also promoting the formation of the strongest UCI. Results based on both reanalysis and the atmospheric circulation data (Nied?wied?’s circulation type) confirm that cases with the strongest UHI and UCI during the same day occur in strong high-pressure system with the center situated above Poland or central Europe.  相似文献   
79.
Synoptic conditions of extreme rainwater pollution episodes, evidenced by maximum values of parameters measured in the protected area of Wielkopolski National Park (western-central Poland), were analysed in this study. Precipitation samples were tested for the following parameters: pH, electrical conductivity and the concentration of the following elements: F-, Cl-, NO2-, NO3-, PO43-, SO42- and Na+, NH4+, K+, Mg2+, Ca2+. It was assumed, that in winter, western advection of Atlantic air masses was the most frequent aerosol and pollution transport scenario for the investigated area. In summer the most heavily pollution occur at the intensified meridional flow over the central Europe, indicating advection of cooler air from northern Europe and the North Sea. In most of cases, the weather conditions causing extreme concentration of examined pollutants, were determined by the movement of weather fronts over considerable parts of Poland and by precipitation caused by those fronts.  相似文献   
80.
Hydrological processes in mountainous settings depend on snow distribution, whose prediction accuracy is a function of model spatial scale. Although model accuracy is expected to improve with finer spatial resolution, an increase in resolution comes with modelling costs related to increased computational time and greater input data and parameter information. This computational and data collection expense is still a limiting factor for many large watersheds. Thus, this work's main objective is to question which physical processes lead to loss in model accuracy with regard to input spatial resolution under different climatic conditions and elevation ranges. To address this objective, a spatially distributed snow model, iSnobal, was run with inputs distributed at 50‐m—our benchmark for comparison—and 100‐m resolutions and with aggregated (averaged from the fine to the large resolution) inputs from the 50‐m model to 100‐, 250‐, 500‐, and 750‐m resolution for wet, average, and dry years over the Upper Boise River Basin (6,963 km2), which spans four elevation bands: rain dominated, rain–snow transition, and snow dominated below treeline and above treeline. Residuals, defined as differences between values quantified with high resolution (>50 m) models minus the benchmark model (50 m), of simulated snow‐covered area (SCA) and snow water equivalent (SWE) were generally slight in the aggregated scenarios. This was due to transferring the effects of topography on meteorological variables from the 50‐m model to the coarser scales through aggregation. Residuals in SCA and SWE in the distributed 100‐m simulation were greater than those of the aggregated 750 m. Topographic features such as slope and aspect were simplified, and their gradient was reduced due to coarsening the topography from the 50‐ to 100‐m resolution. Therefore, solar radiation was overestimated, and snow drifting was modified and caused substantial SCA and SWE underestimation in the distributed 100‐m model relative to the 50‐m model. Large residuals were observed in the wet year and at the highest elevation band when and where snow mass was large. These results support that model accuracy is substantially reduced with model scales coarser than 50 m.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号