首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
地质学   39篇
  2021年   1篇
  2018年   2篇
  2016年   1篇
  2014年   5篇
  2013年   5篇
  2012年   5篇
  2011年   1篇
  2010年   6篇
  2009年   4篇
  2008年   1篇
  2007年   6篇
  2006年   2篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
21.
In this study we discuss the problem of dating the Kiryabinka complex. The data collected on zircons from pyroxenites of the Kiryabinka polyphase pyroxenite-gabbro complex can help address a number of controversial issues regarding the Precambrian geology of the Southern Urals. First, the age of the complex (T = 680 ± 3.4 Ma) can be assigned within the late Riphean (RF4, Arshinian) or the middle Neoproterozoic (Cryogenian). The available zircon dates from gabbroic and granitoid rocks in the western flank of the Southern Urals (Berdyaush, Akhmer, and Barangul massifs) are supplemented with a new age of ultramafic rocks, the differentiates of a basaltic magma, which further corroborate the conclusion about the Upper Riphean age of the country rocks.  相似文献   
22.
Doklady Earth Sciences - Isotope study of ore-bearing rocks at Fe–Mn rift deposits of the Atasu and Zhezdy (Dzhezdy) ore districts in Central Kazakhstan has been carried out for the first...  相似文献   
23.
The Late Paleozoic intrusive rocks, mostly granitoids, totally occupy more than 200,000 km2 on the territory of Transbaikalia. Isotopic U-Pb zircon dating (about 30 samples from the most typical plutons) shows that the Late Paleozoic magmatic cycle lasted for 55–60 m.y., from ~330 Ma to ~275 Ma. During this time span, five intrusive suites were emplaced throughout the region. The earliest are high-K calc-alkaline granites (330–310 Ma) making up the Angara–Vitim batholith of 150,000 km2 in area. At later stages, formation of geochemically distinct intrusive suites occurred with total or partial overlap in time. In the interval of 305–285 Ma two suites were emplaced: calc-alkaline granitoids with decreased SiO2 content (the Chivyrkui suite of quartz monzonite and granodiorite) and the Zaza suite comprising transitional from calc-alkaline to alkaline granite and quartz syenite. At the next stage, in the interval of 285–278 Ma the shoshonitic Low Selenga suite made up of monzonite, syenite and alkali rich microgabbro was formed; this suite was followed, with significant overlap in time (281–276 Ma), by emplacement of Early Kunalei suite of alkaline (alkali feldspar) and peralkaline syenite and granite. Concurrent emplacement of distinct plutonic suites suggests simultaneous magma generation at different depth and, possibly, from different sources. Despite complex sequence of formation of Late Paleozoic intrusive suites, a general trend from high-K calc-alkaline to alkaline and peralkaline granitoids, is clearly recognized. New data on the isotopic U-Pb zircon age support the Rb-Sr isotope data suggesting that emplacement of large volumes of peralkaline and alkaline (alkali feldspar) syenites and granites occurred in two separate stages: Early Permian (281–278 Ma) and Late Triassic (230–210 Ma). Large volumes and specific compositions of granitoids suggest that the Late Paleozoic magmatism in Transbaikalia occurred successively in the post-collisional (330–310 Ma), transitional (305–285 Ma) and intraplate (285–275 Ma) setting.  相似文献   
24.
Several spindle-shaped grains of zircon, which have a small size (<0.25 mm) and a distinct purplish pink coloration were found in the crushed samples of kimberlites from the Aykhal, Komsomolskaya-Magnitnaya, Botuobinskaya (Siberian platform), and Nyurbinskaya (Yakutia) pipes and olivine lamproites of the Khani massif (West Aldan). U-Pb SHRIMP II zircon dating performed at the VSEGEI Center for Isotopic Research yielded the ages of 1870–1890 Ma for the pipes of the Western province (Aykhal and Komsomolskaya) and 2200–2750 Ma for the pipes of the eastern province (Nyurbinskaya and Botuobinskaya), which allowed us to consider these zircons to be xenogenic to kimberlites. Although these zircons resemble in their age and color those from the granulite xenoliths in the Udachnaya pipe [2], no other granulite minerals are found there. Thus, major geological events in the mantle and lower crust, which led to the formation of zircon-bearing rocks, happened at 1800–1900 Ma in the northern part of the kimberlite province, whereas in the Eastern part of the province (Nakyn field) these events were much older (2220–2700 Ma). It is known that the period of 1800–1900 Ma in the Earth’s history was accompanied by intense tectonic movements and widespread alkaline-carbonatite magmatism. This magmatism was related to plume activity responsible for overheating the large portions of the mantle to the temperatures at which some diamonds in mantle rocks would burn (northern part of the kimberlite province). In the Nakyn area, the mantle underwent few or no geological processes at that time, and perhaps for this reason this area hosts more diamondiferous kimberlites. The age of olivine lamproites from the Khani massif is 2672–2732 Ma. Thus, these are some of the world’s oldest known K-alkaline rocks.  相似文献   
25.
26.
27.
The Erdenetuin-Obo porphyry Cu-Mo deposit was formed at the final stage of development of magmatic activity occasionally manifested in the Late Permian-Early Triassic in the period of at least 40 Ma. Early plutonic (host) and late ore-bearing porphyry intrusive complexes were formed in that period. The plutonic complex is multiphase, while the porphyry complex is polyrhythmical and multiphase within rhythms. The obtained data on the U-Pb isotopic composition (SHRIMP II) of zircons from unaltered rocks of the ore field are discussed: gabbro, diorite, and granodiorite of the plutonic complex and granodiorite-porphyry I and II of the first and second rhythms of the ore-bearing complex, respectively. Zircons of different age levels and genotypes were identified in the course of performed investigations. Gabbro are dominated by postmagmatic (superimposed) zircons with the datings of 239–225 Ma. The age of xenogenic zircon brought out from the basement rocks is estimated at 1146 ± 11 Ma. Zircons occur as magmatic and postmagmatic (superimposed) minerals dated 252–247, 244–233 Ma in diorite and 244–242, 239–224 Ma in granodiorite. The ages of postmagmatic zircons from diorite are partially overlapped by datings of magmatic zircons from granodiorite and granodiorite-porphyry. In the porphyry complex, the datings of magmatic zircons are 240–234 and 222–220 Ma in granodiorite-porphyries I and II, respectively. There are also inherited zircons with datings coinciding with those of magmatic zircons from precursor intrusive rocks. Datings of such zircons are 249–241 and 257–231 Ma for granodiorite-porphyries I and II, respectively. As a whole, zircon datings in all studied igneous rocks forming a virtually uninterrupted range in the period of 257–220 Ma allow us to suggest the relation of the ore magmatic system to the long-living constantly active deep source occasionally delivering melt to the upper levels.  相似文献   
28.
Individual grains of zircon from the Archean Kostomuksha, North Karelian and Matkalakhta greenstone belts, which are situated respectively in western, northern and eastern Karelia, are studied using the ion microprobe SHRIMP II. As a result, the oldest 207Pb/206Pb ages of 3151 ± 4.6 and 3329 ± 16 Ma are first determined for detrital zircons from northern and eastern Karelia. The 207Pb/206Pb ages estimated for two subsequent metamorphic events of Archean Eon in eastern Karelia correspond to 3.25 and 3.17–3.10 Ga. The age value of 2711 ± 9.6 Ma is determined for silicic volcano-plutonic complex and quartz stockwork in northern Karelia and the date 2821 ± 15 Ma for magmatic rocks of eastern Karelia. Silicic volcanics from an oceanic plateau section in the Kostomuksha belt are dated at 2791.7 ± 6.1 Ma for the first time in the Archean of Fennoscandia. The oldest detrital zircons from siliciclastic metasediments determine the stabilization time of Archean continental nuclei in East Fennoscandia. The younger generation of greenstone belts is exemplified in the Karelian craton by the Matkalakhta and Kostomuksha structures comprising rock associations less than 2.82 Ga old, mafic rocks of the Kontokki Group included. Geological history of these belts corresponds to geodynamic mesocycle 90–110 Ma long and to the Archean global epoch of metallogeny, which was responsible for origin of most valuable deposits of base and precious metals.  相似文献   
29.
30.
The Kalguty ore-magmatic system comprises two intrusive complexes: the Kalguty granite-leucogranite complex and Eastern Kalguty complex of dikes and small intrusions. U-Pb dating of individual zircon grains from granites of the main intrusive phase demonstrated that the crystallization age of small grains of magmatic habits and outer rims of large grains is almost concordant and is 216 ± 3 Ma. Ar-Ar isotope study shows that the K-Ar system of biotites from granites of the main phase within the Kalguty ore field was disturbed (radiogenic Ar was partially lost) and gave an age of 202 ± 1 Ma. The Ar-Ar dating of muscovites from intraore and postore dikes of the Eastern Kalguty complex devoid of signatures of postmagmatic recrystallization and superimposed greisenization gave similar ages of 205–201 Ma. This date is considered as the emplacement age of the Eastern Kalguty dikes and associated complex W-Mo-Bi-Be ore mineralization. Sm-Nd and Pb-Pb isotopic study of granites, ongonites, and elvans of the Kalguty ore-magmatic system and host rocks shows that these systems were closed. For example, recalculation of Nd isotopic ratios for corresponding ages of crystallization of magmatic systems (216 and 205 Ma) shows that ?Nd(T) values decrease from ?1.9 to ?3.5 ... ?5.08 with transition from granite-leucogranite to subvolcanic granite porphyry, ongonite, and elvan dikes with corresponding increase of model ages of protoliths from 1.0 to 1.25 Ga. Lead isotopic ratios for leaching residues of whole-rock samples of all rock varieties (206Pb/204Pb = 18.305–18.831; 207Pb/204Pb = 15.527–15.571) are plotted well below the line of average crustal lead evolution according to the Stacey-Kramers model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号