全文获取类型
收费全文 | 100篇 |
免费 | 1篇 |
专业分类
测绘学 | 1篇 |
地球物理 | 48篇 |
地质学 | 40篇 |
海洋学 | 1篇 |
天文学 | 11篇 |
出版年
2022年 | 1篇 |
2021年 | 1篇 |
2020年 | 3篇 |
2019年 | 3篇 |
2018年 | 3篇 |
2017年 | 3篇 |
2016年 | 5篇 |
2015年 | 1篇 |
2014年 | 6篇 |
2013年 | 5篇 |
2012年 | 4篇 |
2011年 | 7篇 |
2010年 | 10篇 |
2009年 | 11篇 |
2008年 | 6篇 |
2007年 | 7篇 |
2006年 | 5篇 |
2005年 | 6篇 |
2004年 | 4篇 |
2003年 | 1篇 |
2002年 | 1篇 |
2001年 | 3篇 |
1982年 | 1篇 |
1970年 | 1篇 |
1969年 | 1篇 |
1968年 | 1篇 |
1967年 | 1篇 |
排序方式: 共有101条查询结果,搜索用时 19 毫秒
81.
Long-term observational data are used to compare and analyze time and space variations in the concentrations of nutrients in the water of major rivers flowing into the Caspian Sea and assess the nutrients runoff into the sea. Annual variations in the normal monthly values of river runoff and nutrient compound concentrations and input into the sea are considered (18 compounds and considered for the Volga, Ural, Terek, Sulak, and Samur, and 7 compounds are considered for the Kura). The Volga contribution to nutrient input into the sea is found to vary from 77 to 94% with the average of 86%. 相似文献
82.
83.
A mathematical model based on average long-term data on water temperature, illumination, transparency, and nutrient content is used to calculate annual variations in the concentrations of organic and inorganic fractions of nutrients (C, N, Si, and P) in ten water areas in the Caspian Sea. The eutrophication of sea environment is examined with special emphasis on the increase in the biomass of aquatic animals (in particular, phyto- and zooplankton), the rate and duration of periods of plankton blooming, and changes in the conditions of nutrient limiting of primary production processes in different parts of the sea. Relationships between the inorganic components of N and P in river runoff and sea water areas are established. The obtained Nmin/DIP ratios show P primary production to be limited in the zone of influence of the Volga runoff, P and N primary production to be limited in other northern parts of the sea, and N primary production to be mainly limited in the middle and southern parts of the sea. 相似文献
84.
A. V. Leonov 《Water Resources》2005,32(2):134-144
The available published data were used to reveal the principal conditions and factors that control the formation and evolution of the Black Sea water salinity. Formalization of the major processes that contribute to the formation of sea salinity structure enabled, based on the present-day data on water balance, the reproduction of profiles of water salinity and the coefficient of vertical water exchange K
Z
after 2, 4, 6, 8, and 10 ka since the beginning of water exchange with the Sea of Marmara through the Bosphorus. The time during which the present-day profile of the Black Sea water salinity had formed was evaluated. The results of simulation for different formation stages of the Black Sea salinity structure were used to determine the major ways of salt input into the sea (with river runoff and waters of the Lower Bosphorus Current) and its removal from the sea (the Upper Bosphorus Current). It was established that the Black Sea water salinity regime has virtually attained a stationary state.Translated from Vodnye Resursy, Vol. 32, No. 2, 2005, pp. 154–164.Original Russian Text Copyright © 2005 by Leonov. 相似文献
85.
86.
The biohydrochemical features of the Caspian Sea ecosystem were estimated for its ten water areas with the use of a mathematical model describing the transformation of compounds of organogenic elements (C, Si, N, and P) and taking into account the morphometric characteristics of the water areas and long-term mean monthly values of the major characteristics of the aquatic environment. Variations in the estimated concentrations of mineral and aggregated biogenic substance fractions, microorganism biomasses (heterotrophic bacteria, three phytoplankton groups and two zooplankton groups) in different water areas of the sea were analyzed. The formation conditions of microorganism biomasses in different water areas are characterized by the analysis of their bioproductivity estimates based on evaluated internal biogenic substance fluxes. 相似文献
87.
Karymshina, a giant supervolcano caldera in Kamchatka: Boundaries, structure, volume of pyroclastics
Data on a caldera discovered in 2006 are reported. The caldera formed in southern Kamchatka during Eopleistocene time (1.2 to 1.5 Ma). The caldera boundaries have been reconstructed and its dimensions determined (approximately 15 × 25 km). An uplifted block has been identified in the northwestern part of the caldera, the block is considered to be the result of emplacement of viscous rhyolite magmas at a later time (approximately 0.5–0.8 Ma), that is, as a resurgent uplift. We have reconstructed the boundaries of a large lacustrine basin that formed in the caldera after the appearance of the resurgent uplift. Calculations are provided yielding the volume of the pyroclastics ejected during caldera generation. It is shown that the caldera-forming eruption was a major one in Kamchatka in regard to its volume of ejected material, and ranks as a major eruption worldwide. We examined the structural controls of present-day hydrothermal systems and mineral occurrences situated in the area of study to demonstrate their relations to the caldera and the resurgent uplift. 相似文献
88.
Leonov M. G. Morozov Yu. A. Przhiyalgovskii E. S. Rybin A. K. Bakeev R. A. Lavrushina E. V. Stefanov Yu. P. 《Geotectonics》2020,54(2):147-172
Geotectonics - The article provides geological data on the morphostructural differentiation of sedimentary basins and the results of tectonophysical and digital modeling reflecting the shape and... 相似文献
89.
A mathematical model describing the biotransformations of organic and mineral compounds of biogenic elements (P, N, and Si) and dissolved organic carbon was applied for a theoretical analysis of the recycling of nutrients in the coastal zone of the Canary water upwelling. The aim of this study was to quantitatively estimate the effect of nutrient recycling on the dynamics of the biomasses of microorganisms as a matter basis for the biological productivity of the marine environment. Model calculations were carried out for four near-shore areas off the Moroccan Sahara using the morphometric data (mean depths, water volumes, and areas) and longterm monthly mean values of the parameters of the marine environment (temperature, light intensity, water transparency, and depth of the thermocline). In the calculations, no account was taken for the flow rates across the boundaries between the areas and only indirect account for the vertical exchange was taken. At the absence of nutrient transfer, the model reproduces particular features of the dynamics of nutrient and detritus concentrations and the biomasses of microorganisms resulting from the internal recycling of organic and mineral substances only. In order to characterize the processes of the biotransformation, the internal fluxes and turnover times of organic and mineral components were estimated together with the biomasses and biological productivities of microorganisms. 相似文献
90.