首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   3篇
  国内免费   12篇
测绘学   3篇
大气科学   2篇
地球物理   9篇
地质学   67篇
海洋学   7篇
天文学   36篇
综合类   4篇
自然地理   5篇
  2023年   3篇
  2021年   2篇
  2020年   1篇
  2019年   6篇
  2018年   5篇
  2017年   6篇
  2016年   4篇
  2015年   3篇
  2014年   11篇
  2013年   3篇
  2012年   6篇
  2011年   7篇
  2010年   5篇
  2009年   8篇
  2008年   9篇
  2007年   9篇
  2006年   8篇
  2005年   1篇
  2004年   7篇
  2003年   6篇
  2002年   5篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1993年   1篇
  1991年   4篇
  1990年   1篇
  1981年   1篇
  1970年   1篇
排序方式: 共有133条查询结果,搜索用时 31 毫秒
81.
An active region on the surface of a cometarynucleus is considered as a conic hole in the surface dust mantle with icy bottom and dusty side-walls. This conic structureshould concentrate solar energy onto the bottom andtherefore enhance sublimation. Preliminary results of thecalculation of this effect are given. The temperature distributionat the bottom of the crater is calculated for different sets ofits geometrical parameters. Effects of intensified sublimation depending on the geometrical parameters areconsidered for the specific case when a single active region islocated exactly at the pole of the nucleus and the pole is directed tothe Sun.  相似文献   
82.
The Korosten complex is a Paleoproterozoic gabbro–anorthosite–rapakivi granite intrusion which was emplaced over a protracted time interval — 1800–1737 Ma. The complex occupies an area of about 12 000 km2 in the north-western region of the Ukrainian shield. About 18% of this area is occupied by various mafic rocks (gabbro, leucogabbro, anorthosite) that comprise five rock suites: early anorthositic A1 (1800–1780 Ma), main anorthositic A2 (1760 Ma), early gabbroic G3 (between 1760 and 1758 Ma), late gabbroic G4 (1758 Ma), and a suite of dykes D5 (before 1737 Ma). In order to examine the relationships between the various intrusions and to assess possible magmatic sources, Nd and Sr isotopic composition in mafic whole-rock samples were measured. New Sr and Nd isotope measurements combined with literature data for the mafic rocks of the Korosten complex are consistent and enable construction of Rb–Sr and Sm–Nd isochronous regressions that yield the following ages: 1870 ± 310 Ma (Rb–Sr) and 1721 ± 90 Ma (Sm–Nd). These ages are in agreement with those obtained by the U–Pb method on zircons and indicate that both Rb–Sr and Sm–Nd systems have remained closed since the time of crystallisation. In detail, however, measurable differences in isotopic composition of the Korosten mafic rock depending on their suite affiliation were revealed. The oldest, A1 rocks have lower Sr (87Sr/86Sr(1760) = 0.70233–0.70288) and higher Nd (εNd(1760) = 1.6–0.9) isotopic composition. The most widespread A2 anorthosite and leucogabbro display higher Sr and lower Nd isotopic composition: 87Sr/86Sr(1760) = 0.70362, εNd(1760) varies from 0.2 to − 0.7. The G3 gabbro–norite has slightly lower εNd(1760) varying from − 0.7 to − 0.9. Finally, G4 gabbroic rocks show relatively high initial 87Sr/86Sr (0.70334–0.70336) and the lowest Nd isotopic composition (εNd(1760) varies from − 0.8 to − 1.4) of any of the mafic rocks of the Korosten complex studied to date. On the basis of Sr and Nd isotopic composition we conclude that Korosten initial melts may have inherited their Nd and Sr isotopic characteristics from the lower crust created during the 2.05–1.95 Ga Osnitsk orogeny and 2.0 Ga continental flood basalt event. Indeed, εNd(1760) values in Osnitsk rocks vary from 0.0 to − 1.9 and from 0.2 to 3.4 in flood basalts. We suggest that these rocks being drawn into the upper mantle might melt and give rise to the Korosten initial melts. 87Sr/86Sr(1760) values also support this interpretation. We suggest that the Sr and Nd isotopic data currently available on mafic rocks of the Korosten complex are consistent with an origin of its primary melts by partial melting of lower crustal material due to downthrusting of the lower crust into upper mantle forced by Paleoproterozoic amalgamation of Sarmatia and Fennoscandia.  相似文献   
83.
川滇黔铅锌矿集区是华南大面积低温成矿域的重要组成部分,区内铅锌矿床是否属于MVT型矿床长期存在争议。该区铅锌矿床以富集Ge等稀散元素为特征,闪锌矿是其主要载体矿物,但稀散元素在黄铁矿中是否富集、赋存状态及微量元素组成特征等研究基本属于空白。本文通过LA-ICPMS研究富乐黄铁矿中微量元素(尤其是稀散元素)的富集特征,发现黄铁矿中也相对富集Ge。本研究样品选自富乐矿床的富乐和富盛两个矿段,包括1350、1410和1536三个中段(由深到浅),LAICPMS分析结果表明,该矿床黄铁矿以富集Cu、As、Co、Ni为特征,局部富集Pb(Sb)和Zn(以方铅矿和闪锌矿显微包裹体形式赋存于黄铁矿中),该类黄铁矿富集的稀散元素主要为Se、Ge及少量Tl、Te,而Cd和In以类质同象形式赋存于含Zn的显微包裹体(闪锌矿)中,类质同象是其余稀散元素主要赋存形式,且黄铁矿中Ge与Cu存在较好相关关系,可能存在Cu~(2+)+Ge~(2+)?2Fe~(2+)耦合置换方式。此外,黄铁矿中稀散元素的富集与成矿元素(特别是Cu)的富集密切相关,随着成矿作用的进行,从矿体深部到浅部,成矿温度逐渐降低,Se/Te比值逐渐升高,且稀散元素与成矿元素呈逐渐增加趋势。研究表明,该矿床黄铁矿的Co/Ni比值基本都小于1. 00,暗示其属于沉积改造型黄铁矿,在Co-Ni和稀散元素Se-Tl含量投影图上,富乐矿床黄铁矿的投影点与MVT型矿床投影区基本一致,而明显有别于SEDEX、VMS和矽卡岩型矿床中黄铁矿的投影区,结合富乐矿床类似于MVT型的地质特征,我们认为富乐矿床属于MVT型铅锌矿床。  相似文献   
84.
The structural stability of manganese titanate MnTiO3 at high pressure was investigated by X-ray diffraction and Raman spectroscopy with diamond anvil cells. Ilmenite-type MnTiO3 is stable at least to 26.6 GPa, and lithium niobate type MnTiO3 reversibly transforms at room temperature to perovskite at 2.0 GPa. Bulk moduli (K300) of ilmenite, lithium niobate and perovskite are 174(4) GPa, 179(8) GPa, and 208(5) GPa, respectively (at fixed first pressure derivative K′ = 4). The Grüneisen parameter γ has been estimated to be 1.28 for ilmenite and 1.75 for perovskite. In ilmenite phase, TiO6 octahedra become more regular with increasing pressure. In perovskite phase structural distortion increases with pressure increase.  相似文献   
85.
86.
Mineralogy and Petrology - The concentrations of 26 trace elements have been determined by laser ablation ICP-MS in zircons from four samples of basic rocks of the Korosten...  相似文献   
87.
A method for numerical modeling of quasi-stationary electromagnetic fields in axially symmetric media is proposed. It is based on the direct finite-element method and the use of special basis functions. Assuming cylindrical coordinates r, φ, z, the three-dimensional solution is presented as a superposition of fields with the azimuthal dependence exp(inφ). For each case this results in a system of two equations of elliptical type in two scalar functions in the (r, z) plane.

The discretization leads to the conservative nine-points difference scheme. The system of linear equations is solved by means of the LU-decomposition technique, the band structure of the matrix being taken into account.

The program is tested using analytical results (DC asymptote) for a near-surface inhomogeneity. Comparison also is made with 2D results (H-polarization) for the model of a local well conducting inclusion in a three-layered Earth.  相似文献   

88.
Simultaneous volume measurements of MgSiO3 post-perovskite (PPv) and perovskite (Pv) were performed in a diamond anvil cell (DAC) combined with synchrotron X-rays. An externally-heated DAC was used in addition to a laser-heated DAC for the volume measurement experiment at high temperatures. The volume data were collected in the stability field of post-perovskite from 115 to 130 GPa. The temperature generated in the externally-heated and the laser-heated DACs for the volume measurement were up to 832 and 2330 K, respectively. Using two different but complementary heating techniques, we collected the data at a wide temperature range from 300 to 2330 K. The obtained P-V-T data for PPv and Pv were fitted to a third-ordered Birch-Murnaghan equation of state (EOS). For a precise comparison of the volume between the two phases, the EOSs were constructed based on the same pressure scale of MgO. The simultaneous volume measurements and the volumes calculated from the determined EOSs demonstrate that the volume difference between PPv and Pv of about 1.5% is almost constant with increasing temperature to 4000 K at the transition. At the base of the mantle, this density difference corresponds to a temperature anomaly of 1300 K without the phase transition due to the very small thermal expansivity of minerals, which has a significant effect on mantle dynamics. The thermal expansivity contrast between the top and the bottom of the mantle is a factor of 3.6. From a mantle convection study, this value suggests that huge and hot plumes are formed at the core–mantle boundary.  相似文献   
89.
A natural shockwave event led to the formation of a new crystalline polymorph of carbon in gneisses from the Popigai crater, Russia. The new species occupies the interior of a multiphase assemblage and is entirely enveloped by lonsdaleite and graphite. Polishing hardness of this new phase is greater than that of lonsdaleite. Micro-beam synchrotron X-ray diffraction, imaging and fluorescence studies revealed a pure transparent carbon phase. The diffraction pattern is indexed in terms of a cubic cell (a=14.697 Å, space group Pm3m.). This species was neither encountered in static or dynamic high-pressure experiment nor predicted by theoretical calculations. To cite this article: A. El Goresy et al., C. R. Geoscience 335 (2003).  相似文献   
90.
Using powder X-ray diffraction of heated solids to pressures reaching 68 GPa, the pressure-volume-temperature (PVT) data on corundum Al2O3 and ɛ-Fe were determined with the following results: *Corundum,*Iron, *Al2O3*ɛ-Fe Isothermal bulk*258 (2)*164 (3)  modulus K'300, 1 (GPa) Pressure derivative K300, 1*4.88 (4)*5.36 (16) Temperature derivative*–0.020 (2)*–0.043 (3)  (∂K T,1 /∂T) P (GPa/K) Molar volume V300,1*25.59 (2)*6.76 (2)  (cm3/mol) Isobaric thermal expansion at 1 atm (0.101 MPa) is given by (K–1): α T =2.6 (2) 10–5+1.81 (9) 10–9 T–0.67 (6)/T 2 for corundum, and α T =5.7 (4) 10–5+4.2 (4) 10–9 T–0.17 (7)/T 2 for iron ɛ-Fe. Received: 1 March 1997 / Revised, accepted: 21 August 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号