首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40488篇
  免费   1141篇
  国内免费   708篇
测绘学   902篇
大气科学   2849篇
地球物理   8051篇
地质学   15217篇
海洋学   3782篇
天文学   8794篇
综合类   219篇
自然地理   2523篇
  2022年   360篇
  2021年   581篇
  2020年   613篇
  2019年   715篇
  2018年   1135篇
  2017年   1139篇
  2016年   1207篇
  2015年   719篇
  2014年   1169篇
  2013年   1997篇
  2012年   1305篇
  2011年   1761篇
  2010年   1546篇
  2009年   1904篇
  2008年   1724篇
  2007年   1772篇
  2006年   1619篇
  2005年   1117篇
  2004年   1109篇
  2003年   1168篇
  2002年   1054篇
  2001年   916篇
  2000年   844篇
  1999年   756篇
  1998年   742篇
  1997年   760篇
  1996年   614篇
  1995年   589篇
  1994年   510篇
  1993年   462篇
  1992年   423篇
  1991年   431篇
  1990年   444篇
  1989年   400篇
  1988年   375篇
  1987年   407篇
  1986年   421篇
  1985年   512篇
  1984年   549篇
  1983年   550篇
  1982年   500篇
  1981年   458篇
  1980年   431篇
  1979年   410篇
  1978年   380篇
  1977年   388篇
  1976年   346篇
  1975年   355篇
  1974年   345篇
  1973年   372篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
991.
一种新的储层孔隙成因类型--石英溶解型次生孔隙   总被引:26,自引:2,他引:26  
石英作为碎屑岩储层中的一种难溶组分,普遍认为它和次生孔隙的形成关系不十分密切。研究认为泌阳凹陷核桃园组储层中的碎屑石英颗粒存在明显的溶解现象,并形成以石英直接溶解型孔隙为主的储集空间特征。石英颗粒被溶解的部分在薄片中所占的范围为 2 %~ 7%者常见,高者达 8%以上,在总孔隙中所占的相对含量也多数在10 %~ 35 %之间,早成岩B期是其最主要形成期。石英溶解型次生孔隙的大量存在为碎屑岩储层中SiO2 胶结物及次生孔隙成因等问题的解释以及储层预测和评价提供了新的可能性。  相似文献   
992.
The chemical compositions of the atmospheres of six metal-poor stars are analyzed. Spectra with signal-to-noise ratios of no less than 100 and a resolution of R≈17 000 were obtained using the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. The abundances of Li, O, α-process elements (Mg, Si, Ca, Ti), Na, K, Sc, iron-peak elements (Cr, Mn, Fe, Ni, Cu, Zn), and s-process elements (Y, Ba) are derived. The star G251-54 ([Fe/H]=?1.55, T eff=5541 K, logg=3.58) is deficient in some elements compared to both stars with similar metallicities and the Sun. The atmosphere of G251-54 has the following elemental abundances relative to iron: [O/Fe]=+0.47, [α/Fe]≈?0.3, [Na/Fe]=?0.60, [Sc/Fe]=?0.57, [Cr, Ni, Fe]≈0, [Zn/Fe]=+0.16, [Cu/Fe]=?0.66, [Y/Fe]=?0.70, and [Ba/Fe]=?1.35. The remaining five stars have metallicities in the range ?1.6<[Fe/H]相似文献   
993.
994.
The submarine Haakon Mosby mud volcano was studied in detail during several cruises, resulting in the collection of an abundant and diverse lithological material. Comprehensive field and laboratory studies made it possible to identify different types of sediments with specific granulometric and pelite fraction (<0.005 mm) compositions, as well as the regularity of their spatial distribution relative to various morphostructural zones of the mud volcano.  相似文献   
995.
A new mechanism is proposed to account for transitions between the quiescent and active states of symbiotic stars. A numerical study of the gas dynamics of the flows in the symbiotic star Z And shows that even small variations in the velocity of the wind from the cool giant can abruptly change the flow structure near the hot component. Such changes alter the accretion regime as the wind velocity increases: disk accretion makes a transition to accretion from the flow. Our calculations indicate that the accretion rate increases by a factor of several tens over a short time interval (~0.1 of the orbital period) during the rearrangement of the flow, when the accretion disk is destroyed.  相似文献   
996.
Cordieritites and highly peraluminous granites within the ElPilón granite complex, Sierras Pampeanas, Argentina,were emplaced during a medium-P, high-T metamorphic event duringthe initial decompression of a Cambrian orogen along the southwesternmargin of Gondwana. Very fresh orbicular and massive cordierititebodies with up to 90% cordieritite are genetically associatedwith a cordierite monzogranite pluton and a larger body of porphyriticgranodiorite. The petrogenesis of this association has beenstudied using petrographical, mineralogical, thermobarometric,geochemical, geochronological and isotope methods. The graniticmagmas were formed by anatexis of mid-crustal metamorphic rocksformed earlier in the Pampean orogeny. The cordieritites appearat the top of feeder conduits that connected the source regionlocated at  相似文献   
997.
ABSTRACT The depositional organization and architecture of the middle–late Devonian Yangdi rimmed carbonate platform margin in the Guilin area of South China were related to oblique, extensional faulting in a strike‐slip setting. The platform margin shows two main stages of construction in the late Givetian to Frasnian, with a bioconstructed margin evolving into a sand‐shoal system. In the late Givetian, the platform margin was rimmed with microbial buildups composed mainly of cyanobacterial colonies (mostly Renalcis and Epiphyton). These grew upwards and produced an aggradational (locally slightly retrogradational) architecture with steep foreslope clinoforms. Three depositional sequences (S3–S5) are recognized in the upper Givetian strata, which are dominated by extensive microbialites. Metre‐scale depositional cyclicity occurs in most facies associations, except in the platform‐margin buildups and upper foreslope facies. In the latest Givetian (at the top of sequence S5), relative platform uplift (± subaerial exposure) and associated rapid basin subsidence (probably a block‐tilting effect) caused large‐scale platform collapse and slope erosion to give local scalloped embayments along the platform margin and the synchronous demise of microbial buildups. Subsequently, sand shoals and banks composed of ooids and peloids and, a little later, stromatoporoid buildups on the palaeohighs, developed along the platform margin, from which abundant loose sediment was transported downslope to form gravity‐flow deposits. Another strong tectonic episode caused further platform collapse in the early Frasnian (at the top of sequence S6), leading to large‐scale breccia release and the death of the stromatoporoid buildups. Siliceous facies (banded cherts and siliceous shales) were then deposited extensively in the basin centre as a result of the influx of hydrothermal fluids. The platform‐margin sand‐shoal/bank system, possibly with gullies on the slope, persisted into the latest Frasnian until the restoration of microbial buildups. Four sequences (S6–S9), characterized by abundant sand‐shoal deposits on the margin and gravity‐flow and hemipelagic deposits on the slope, are distinguished in the Frasnian strata. Smaller‐scale depositional cyclicity is evident in all facies associations across the platform–slope–basin transect. The distinctive depositional architecture and evolution of this Yangdi Platform are interpreted as having been controlled mainly by regional tectonics with contributions from eustasy, environmental factors, oceanographic setting, biotic and sedimentary fabrics.  相似文献   
998.
Abstract River avulsions are commonly considered to be driven by the aggradation and growth of alluvial ridges, and the associated increase in cross‐valley slope relative to either the down‐channel slope or the down‐valley slope (the latter is termed the slope ratio in the present paper). Therefore, spatial patterns of overbank aggradation rate over stratigraphically relevant time scales are critical in avulsion‐dominated models of alluvial architecture. Detailed evidence on centennial‐ to millennial‐scale floodplain deposition has, to date, been largely unavailable. New data on such long‐term overbank aggradation rates from the Rhine–Meuse and Mississippi deltas demonstrate that the rate of decrease of overbank deposition away from the channel belt is much larger than has been supposed hitherto, and can be similar to observations for single overbank floods. This leads to more rapid growth of alluvial ridges and more rapid increase in slope ratios, potentially resulting in increased avulsion frequencies. A revised input parameter for overbank aggradation rate was used in a three‐dimensional model of alluvial architecture to study its effect on avulsion frequency. Realistic patterns of avulsion and interavulsion periods (≈1000 years) were simulated with input data from the Holocene Rhine River, with avulsions occurring when the slope ratio is in the range 3–5. However, caution should be practised with respect to uncritical use of these numbers in different settings. Evidence from the two study areas suggests that the avulsion threshold cannot be represented by one single value, irrespective of whether critical slope ratios are used, as in the present study, or superelevation as has been proposed by other investigators.  相似文献   
999.
We have collected about 150 magnetotelluric (MT) soundings in northeastern Nevada in the region of the Ruby Mountains metamorphic core complex uplift and southern Carlin mineral trend, in an effort to illuminate controls on core complex evolution and deposition of world-class gold deposits. The region has experienced a broad range of tectonic events including several periods of compressional and extensional deformation, which have contributed to the total expression of electrical resistivity. Most of the soundings reside in three east–west profiles across increasing degrees of core uplift to the north (Bald Mountain, Harrison Pass, and Secret Pass latitudes). One short cross-line was also taken to assess an east–west structure to the north of the northern profile. Model resistivity cross-sections were derived from the MT data using a 2-D inversion algorithm, which damps departures of model parameters from an a priori structure. Geological interpretation of the resistivity combines previous seismic, potential field and isotope models, structural and petrological models for regional compression and extension, and detailed structural/stratigraphic interpretations incorporating drilling for petroleum and mineral exploration. To first order, the resistivity structure is one of a moderately conductive, Phanerozoic sedimentary section fundamentally disrupted by intrusion and uplift of resistive crystalline rocks. Late Devonian and early Mississippian shales of the Pilot and Chainman Formations together form an important conductive marker sequence in the stratigraphy and show pronounced increases in conductance (conductivity–thickness product) from east to west. These increases are attributed to graphitization caused by Elko–Sevier era compressional shear deformation and possibly by intrusive heating. The resistive crystalline central massifs adjoin the host stratigraphy across crustal-scale, steeply dipping fault zones. The zones provide pathways to the lower crust for heterogeneous, upper crustal induced, electric current flow. Resistive core complex crust appears steeply bounded under the middle of the neighboring grabens and not to deepen at a shallow angle to arbitrary distances to the west. The numerous crustal breaks imaged with MT may contribute to the low effective elastic thickness (Te) estimated regionally for the Great Basin and exemplify the mid-crustal, steeply dipping slip zones in which major earthquakes nucleate. An east–west oriented conductor in the crystalline upper crust spans the East Humboldt Range and northern Ruby Mountains. The conductor may be related to nearby graphitic metasediments, with possible alteration by middle Tertiary magmatism. Lower crustal resistivity everywhere under the profiles is low and appears quasi one-dimensional. It is consistent with a low rock porosity (<1 vol.%) containing hypersaline brines and possible water-undersaturated crustal melts, residual to the mostly Miocene regional extension. The resistivity expression of the southern Carlin Trend (CT) in the Pinon Range is not a simple lineament but rather a family of structures attributed to Eocene intrusion, stratal deformation, and alteration/graphitization. Substantial reactivation or overprinting by core complex uplift or Basin–Range extensional events seems likely. We concur with others that the Carlin Trend may result in part from overlap of the large Eocene Northeast Nevada Volcanic Field with Precambrian–Paleozoic deep-water clastic source rocks thickening abruptly to the west of the Pinon Range, and projecting to the north–northwest.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号