The Holocene evolution of Rhone River clastic sediment supply in Lake Le Bourget is documented by sub-bottom seismic profiling and multidisciplinary analysis of well-dated sediment cores. Six high-amplitude reflectors within the lacustrine drape can be correlated to periods of enhanced inter- and underflow deposition in sediment cores. Based on the synthesis of major environmental changes in the NW Alps and on the age-depth model covering the past 7500 years in Lake Le Bourget, periods of enhanced Rhone River flood events in the lake can be related to abrupt climate changes and/or to increasing land use since c. 2700 cal. yr BP. For example, significant land use under rather stable climate conditions during the Roman Empire may be responsible for large flood deposits in the northern part of Lake Le Bourget between AD 966 and 1093. However, during the Little Ice Age (LIA), well-documented major environmental changes in the catchment area essentially resulted from climate change and formed basin-wide major flood deposits in Lake Le Bourget. Up to five 'LIA-like' Holocene cold periods developing enhanced Rhone River flooding activity in Lake Le Bourget are documented at c. 7200, 5200, 2800, 1600 and 200 cal. yr BP. These abrupt climate changes were associated in the NW Alps with Mont Blanc glacier advances, enhanced glaciofluvial regimes and high lake levels. Correlations with European lake level fluctuations and winter precipitation regimes inferred from glacier fluctuations in western Norway suggest that these five Holocene cooling events at 45°N were associated with enhanced westerlies, possibly resulting from a persistent negative mode of the North Atlantic Oscillation. 相似文献
Structural uncertainty exists when associating sparse fault interpretations made from two-dimensional seismic lines or limited outcrop observations. Here, a graph formalism is proposed that describes the problem of associating spatial fault evidence. A combinatorial analysis, relying on this formalism, shows that the number of association scenarios is given by the Bell number, and increases exponentially with the number of pieces of evidence. As a result, the complete exploration of uncertainties is computationally highly challenging. The available prior geological knowledge is expressed by numerical rules to reduce the number of scenarios, and the graph formalism makes structural interpretation easier to reproduce than manual interpretation. The Bron–Kerbosch algorithm, which finds maximal cliques in undirected graphs, is used to detect major possible structures. This framework opens the way to a numerically assisted exploration of uncertainties during structural interpretation.
A new argyrodite occurrence has been discovered in the Ro?ia Montan? ore deposit located in the South Apuseni Mountains, Romania. Argyrodite is associated with common base metal sulfides and sulfosalts (galena, sphalerite, chalcopyrite, tetrahedrite ± alabandite, pyrite, and marcasite), tellurides (hessite, altaite, sylvanite) and rare electrum grains in the Ag-rich Cârnicel vein hosted by an extracraterial phreatomagmatic breccia within the Cârnic massif. SEM and EPMA analyses revealed that this argyrodite is Te-rich and a mean Ag8.04Ge0.9Te2.07S3.77 formula was calculated. This phase could be the germaniferous equivalent of the previously-described Te-rich canfieldite. To cite this article: L. Bailly et al., C. R. Geoscience 337 (2005).相似文献
The comparative study of two French high-purity silica placers of European class suitable for the electrometallurgy of silicon and ferrosilicon, located at Boudeau and Thédirac, in the Dordogne and Lot departments respectively, indicates strong similarities as regards the sources and the transportation of quartz, as well as a same process of undercover karstification as a determining factor in the formation of the deposits. The main difference lies in the number of the stages necessary to the formation of the trap. This comparative study allows the constitution of dynamic models for the genesis of these economic quartz concentrations. To cite this article: L. Désindes et al., C. R. Geoscience 337 (2005).相似文献
We investigated the oxygen isotope composition (δ18O) of shell striae from juvenile Comptopallium radula (Mollusca; Pectinidae) specimens collected live in New Caledonia. Bottom-water temperature and salinity were monitored in-situ throughout the study period. External shell striae form with a 2-day periodicity in this scallop, making it possible to estimate the date of precipitation for each calcite sample collected along a growth transect. The oxygen isotope composition of shell calcite (δ18Oshell calcite) measured at almost weekly resolution on calcite accreted between August 2002 and July 2003 accurately tracks bottom-water temperatures. A new empirical paleotemperature equation for this scallop species relates temperature and δ18Oshell calcite:
The precise study of adsorption mechanisms at solid–liquid interfaces requires a good analysis of the surface heterogeneity of the studied solids. For that purpose, molecular probe technique is one of the most powerful, especially at solid–gas interfaces. Indeed, low-pressure gas adsorption coupled to modelling of derivative adsorption isotherms as a function of logarithm of pressure allows to study qualitatively and quantitatively the effect of surface heterogeneity on the energy distribution of adsorption centres. The present review points out the interests of that approach to determine the shape of particles, the presence of high-energy adsorption sites and the surface polarity. Results comparing adsorption at solid–gas and solid–liquid interfaces are also mentioned. To cite this article: F. Villiéras et al., C. R. Geoscience 334 (2002) 597–609.相似文献
Hydrous ferric oxide (HFO) colloids formed, in strictly anoxic conditions upon oxidation of Fe2+ ions adsorbed on mineral surface, were investigated under in situ conditions by contact mode atomic force microscopy (AFM). Freshly cleaved and acid-etched large single crystals of near endmember phlogopite were pre-equilibrated with dissolved Fe(II) and then reacted with Hg(II), As(V) and trichlorethene (TCE)-bearing solutions at 25 °C and 1 atm. HFO structures are found to be of nanometer scale. The As(V)–Fe(II) and Hg(II)–Fe(II) reaction products are round (25 nm) microcrystallites located predominantly on the layer edges and are indicative of an accelerated Fe(II) oxidation rate upon formation of Fe(II) inner sphere surface complexes with the phyllosilicate edge surface sites. On the other hand, TCE–Fe(II)–phlogopite reaction products are needle-shaped (45 nm long) particles located on the basal plane along the Periodic Bond Chains (PCBs) directions. Experiments with additions of sodium chloride confirm the importance of the Fe(II) adsorption step in the control of the overall heterogeneous Fe(II)–TCE electron transfer reaction.
Kinetic measurements at the nanomolar level of Hg° formed upon reduction of Hg(II) by Fe(II) in presence of phlogopite particles provide further convincing evidence for reduction of Hg(II)aq coupled to the oxidation of Fe(II) adsorbed at the phlogopite–fluid interface, and indicate that sorption of Fe(II) to mineral surfaces enhances the reduction rate of Hg(II) species. The Hg(II) reduction reaction follows a first-order kinetic law. Under our experimental conditions, which were representative of many natural systems, 80% of the mercury is transferred to the atmosphere as Hg° in less than 2 h.
The reduction of a heavy metal (Hg), a toxic oxyanion (arsenate ion) and a chlorinated solvent (TCE) thus appear to be driven by the high reactivity of adsorbed Fe(II). This is of environmental relevance since these three priority pollutants are that way reductively transformed to a volatile, an immobilizable and a biodegradable species, respectively. Such kinetic data and reaction pathways are important in the evaluation of natural evaluation scenarios, in the optimization of Fe(II)/mineral mixtures as reductants in technical systems, and in general, in predicting the fate and transport of pollutants in natural systems. 相似文献
The effect of sorption and coprecipitation of Fe(II) with calcite on the kinetics of Fe(II) oxidation was investigated. The interaction of Fe(II) with calcite was studied experimentally in the absence and presence of oxygen. The sorption of Fe(II) on calcite occurred in two distinguishable steps: (a) a rapid adsorption step (seconds-minutes) was followed by (b) a slower incorporation (hours-weeks). The incorporated Fe(II) could not be remobilized by a strong complexing agent (phenanthroline or ferrozine) but the dissolution of the outmost calcite layers with carbonic acid allowed its recovery. Based on results of the latter dissolution experiments, a stoichiometry of 0.4 mol% Fe:Ca and a mixed carbonate layer thickness of 25 nm (after 168 h equilibration) were estimated. Fe(II) sorption on calcite could be successfully described by a surface adsorption and precipitation model (Comans & Middelburg, GCA51 (1987), 2587) and surface complexation modeling (Van Cappellen et al., GCA57 (1993), 3505; Pokrovsky et al., Langmuir16 (2000), 2677). The surface complex model required the consideration of two adsorbed Fe(II) surface species, >CO3Fe+ and >CO3FeCO3H0. For the formation of the latter species, a stability constant is being suggested. The oxidation kinetics of Fe(II) in the presence of calcite depended on the equilibration time of aqueous Fe(II) with the mineral prior to the introduction of oxygen. If pre-equilibrated for >15 h, the oxidation kinetics was comparable to a calcite-free system (t1/2 = 145 ± 15 min). Conversely, if Fe(II) was added to an aerated calcite suspension, the rate of oxidation was higher than in the absence of calcite (t1/2 = 41 ± 1 min and t1/2 = 100 ± 15 min, respectively). This catalysis was due to the greater reactivity of the adsorbed Fe(II) species, >CO3FeCO3H0, for which the species specific rate constant was estimated. 相似文献
The Atlantic Meridional Overturning Circulation (AMOC) is a key feature of the climate system. However, its role during climate change is still poorly constrained particularly during an Interglacial to Glacial climate transition and the associated global cooling. We present here the first reconstruction of the evolution of the vertical structure of the rate of the AMOC from the Last Interglaciation to the subsequent glaciation (128,000–60,000 years ago) based on sedimentary (231Pa/230Th) records. We show a deep AMOC during the interglacial warmth Marine Isotope Stage (MIS) 5.5 and a shallower glacial one during glacial MIS 4. The change between these two patterns occurred mostly during the glacial inception, i.e. the transition from MIS 5.5 to MIS 5.4. Our data show that AMOC was enhanced during this latter transition as a consequence of a large increase of the overturning rate of the Intermediate Waters, above 2500 m. We suggest that this AMOC pattern required a reinforced Gulf Stream-North Atlantic Current system that ultimately supported ice-sheet growth by providing heat and moisture to the Northern high latitudes. From MIS 5.4 to MIS 5.1, the AMOC was broadly continuous below 2000 m and supported periods of ice-sheet growth. As a result, a glacial AMOC is triggered at the beginning of MIS 4 due to the extension of ice-sheet and the subsequent reorganization of deep-water formation. This study highlights the role of intermediate waters as a major player during climate change. 相似文献