首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134624篇
  免费   2013篇
  国内免费   982篇
测绘学   3119篇
大气科学   9428篇
地球物理   26777篇
地质学   47396篇
海洋学   12062篇
天文学   29966篇
综合类   340篇
自然地理   8531篇
  2021年   1316篇
  2020年   1512篇
  2019年   1662篇
  2018年   3249篇
  2017年   3066篇
  2016年   3762篇
  2015年   2151篇
  2014年   3665篇
  2013年   6948篇
  2012年   3923篇
  2011年   5326篇
  2010年   4783篇
  2009年   6294篇
  2008年   5534篇
  2007年   5450篇
  2006年   5242篇
  2005年   4024篇
  2004年   3984篇
  2003年   3740篇
  2002年   3641篇
  2001年   3179篇
  2000年   3132篇
  1999年   2601篇
  1998年   2626篇
  1997年   2472篇
  1996年   2197篇
  1995年   2130篇
  1994年   1858篇
  1993年   1760篇
  1992年   1655篇
  1991年   1592篇
  1990年   1695篇
  1989年   1499篇
  1988年   1353篇
  1987年   1631篇
  1986年   1430篇
  1985年   1752篇
  1984年   2018篇
  1983年   1917篇
  1982年   1758篇
  1981年   1668篇
  1980年   1455篇
  1979年   1410篇
  1978年   1419篇
  1977年   1278篇
  1976年   1227篇
  1975年   1192篇
  1974年   1182篇
  1973年   1233篇
  1972年   755篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Korotin  S. A. 《Astronomy Letters》2020,46(8):541-549
Astronomy Letters - The formation of the rubidium resonance lines is considered by taking into account the effects of departures from local thermodynamic equilibrium (LTE). A rubidium model atom...  相似文献   
992.
A wavetrain of high-frequency (HF) P waves from a large earthquake, when recorded at a distant station, looks like a segment of modulated noise, with its duration close to the duration of rupture. These wavetrains, with their bursts and fadings, look much more intermittent than a segment of common stationary random noise. We try to describe quantitatively this bursty behavior. To this end, variogram and spectral analyses are applied to time histories of P-wave envelopes (squared-amplitude or instant-power signals) in six HF bands of 1-Hz width. Nine M w = 7.6–9.2 earthquakes were examined, using, in total, 232 records and 992 single-band traces. Variograms of integrated instant power are approximately linear on a log–log scale, indicating that the correlation structure of the instant-power signal is approximately self-similar. Also, estimates of the power spectrum of the instant-power signal look approximately linear on a log–log scale. Log–log slopes of the variograms and spectra deliver estimates of the Hurst exponent H that are mostly in the range 0.6–0.9, markedly above the value H = 0.5 of uncorrelated (white-noise) signals. The preferred estimate over the entire data set is H = 0.83, still, this estimate may include some bias, and must be treated as preliminary. The inter-event scatter of H estimates is about 0.04, reflecting individual event-to-event variations of H. Many of the average log–log spectral plots show slight concavity that perturbs the approximately linear slope; this is a secondary effect that seems to be mostly related to the limited bandwidth of the data. Evidence is given in support of the idea that the observed approximately self-similar correlation structure of the P-wave envelope originates in a similar structure of the body wave instant-power signal radiated by the source, so that the propagation-related distortions can be regarded as limited. The facts presented suggest that the space–time organization of the earthquake rupture process is multiscaled and bears significant fractal features; it deviates from the brittle-crack model with its two well-separated characteristic scales. Phenomenologically, the high-frequency body-wave radiation from an earthquake source can be thought of as a product of stationary noise and the square root of a positive random envelope function with a power-law spectrum. From the viewpoint of applications, the self-similarity of body wave envelopes provides a useful constraint for earthquake source models used to simulate strong ground motions.  相似文献   
993.
It is suggested that convective scaling, with appropriate extensions, provides the most useful framework for estimating the effects of urban-scale surface inhomogeneities on diffusion in convective conditions. Strong contrasts in surface heat flux exist between cropland, forests, urban areas, and water or marshland surfaces. It is argued that a typical fetch for convective turbulence to readjust to changed heat (or buoyancy) input from the surface below is 2(U/w *)h, where U is the mean wind speed in the mixing layer, w * is the convective scaling velocity, and h is the mixing depth. In contrast, the fetch required for wind speed to readjust to new underlying surface roughness is of the order (U/u *)2h/2, where u * is the friction velocity.The ratio w */U is the best index of diffusion rates in moderately to very unstable conditions. General urban effects on heat flux, h, and U are discussed separately, then their combined effects on w */U are estimated. While this ratio can double over a large city during light winds, its increase is much less for small cities, or during moderate winds. Finally, some examples of heat flux in- homogeneities causing stationary convective features are presented. Steady downdrafts associated with these features are of the order of 0.4w *, and could significantly increase surface concentrations from elevated sources.On assignment from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce.This paper is based on a presentation made at the AMS Specialty Conference on Air Quality Modeling of the Urban Boundary Layer, in Baltimore, late 1983.  相似文献   
994.
In this paper we apply 3D inversion to MT data collected in the Northwestern United States as a part of the EarthScope project. By the end of 2009 MT data had been collected from 262 stations located throughout Oregon, Washington, Idaho, and most of Montana and Wyoming. We used data from 139 MT stations in this analysis. We developed fully parallelized rigorous 3D MT inversion software based on the integral equation method with variable background conductivity. We also implemented a receiver footprint approach which considerably reduced the computational resources needed to invert the large volumes of data covering vast areas. The data set used in the inversion was obtained through the Incorporated Research Institutions for Seismology (IRIS). The inversion domain was divided into 2.7 M cells. The inverted electrical conductivity distribution agrees reasonably well with geological features of the region.  相似文献   
995.
A coupled ice-ocean model of the Arctic is developed in order to study the effects of precipitation and river runoff on sea ice. A dynamic-thermodynamic sea ice model is coupled to an ocean general circulation model which includes a turbulent closure scheme for vertical mixing. The model is forced by interannually varying atmospheric temperature and pressure data from 1980–1989, and spatially varying mean monthly precipitation and river runoffs. Salinity and fresh water fluxes to the ocean from ice growth, snow melt, rain, and runoffs are computed, with no artificial constraints on the ocean salinity. The modeled ice thickness is similar to the observed pattern, with the thickest ice remaining against the Canadian Archipelago throughout the year. The modeled ice drift reproduces the Beaufort gyre and Transpolar drift exiting through Fram Strait. The stable arctic halocline produced by the vertical mixing scheme isolates the surface from the Atlantic layer and reduces the vertical fluxes of heat and salinity. A sensitivity experiment with zero precipitation results in rapidly decreasing ice thickness, in response to greater ocean heat flux from a weakening of the halocline, while an experiment with doubled precipitation results in a smaller increase in ice thickness. A zero-runoff experiment results in a slower decrease in ice thickness than the zero-precipitation case, due to the decadal time scale of the transport of runoff in the model. The results suggest that decadal trends in both arctic precipitation and river runoffs, caused either by anthropogenic or natural climatic change, have the potential to exert broad-scale impacts on the arctic sea ice regime. Received: 6 February 1996 / Accepted: 4 April 1996  相似文献   
996.
The importance of soil moisture inputs and improved model physics in the prediction of the daytime boundary-layer structure during the Southern Great Plains Hydrology Experiment 1997 (SGP97) is investigated using the non-hydrostatic fifth-generation Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) Mesoscale Model MM5. This is Part II of a two-part study examining the relationship of surface heterogeneity to observed boundary-layer structure. Part I focuses on observations and utilizes a simple model while Part II uses observations and MM5 modelling. Soil moisture inputs tested include a lookup table based on soil type and season, output from an offline land-surface model (LSM) forced by atmospheric observations, and high-resolution ( 800 m) airborne microwave remotely sensed data. Model physics improvements are investigated by comparing an LSM directly coupled with the MM5 to a simpler force-restore method at the surface. The scale of land surface heterogeneities is compared to the scale of their effects on boundary-layer structure.The use of more detailed soil moisture fields allowed the MM5 to better represent the large-scale (hundreds of km) and small-scale (tens of km) horizontal gradients in surface-layer weather and, to a lesser degree, the atmospheric boundary-layer (ABL) height, which was evaluated against observations measured by differential absorption lidar (DIAL). The benefits of coupling an LSM to the MM5 were not readily evident in this summertime case, with the model having particular difficulty simulating the timing of maximum surface fluxes while underestimating the depth of the mixed layer.  相似文献   
997.
Titanomagnetite–melt partitioning of Mg, Mn, Al, Ti, Sc, V, Co, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Hf and Ta was investigated experimentally as a function of oxygen fugacity (fO2) and temperature (T) in an andesitic–dacitic bulk-chemical compositional range. In these bulk systems, at constant T, there are strong increases in the titanomagnetite–melt partitioning of the divalent cations (Mg2+, Mn2+, Co2+, Ni2+, Zn2+) and Cu2+/Cu+ with increasing fO2 between 0.2 and 3.7 log units above the fayalite–magnetite–quartz buffer. This is attributed to a coupling between magnetite crystallisation and melt composition. Although melt structure has been invoked to explain the patterns of mineral–melt partitioning of divalent cations, a more rigorous justification of magnetite–melt partitioning can be derived from thermodynamic principles, which accounts for much of the supposed influence ascribed to melt structure. The presence of magnetite-rich spinel in equilibrium with melt over a range of fO2 implies a reciprocal relationship between a(Fe2+O) and a(Fe3+O1.5) in the melt. We show that this relationship accounts for the observed dependence of titanomagnetite–melt partitioning of divalent cations with fO2 in magnetite-rich spinel. As a result of this, titanomagnetite–melt partitioning of divalent cations is indirectly sensitive to changes in fO2 in silicic, but less so in mafic bulk systems.  相似文献   
998.
999.
A thermal event reduces the number of previously registered fission tracks in a mineral dependent upon the track retention properties of the individual mineral. Apatite, sphene and zircon have retention properties over a wide range of temperatures (from 100° to 550°C); apatite data reveal information at lowest temperatures while sphene and zircon data are useful for higher temperatures.Thermal events within this temperature range of 100°C to about 550°C are suitable for study with this technique. The age of the event is determined from samples in which the fission tracks are completely erased, while minerals containing partially removed (erased) tracks provide information on the temperatures occurring during the thermal event.As a test case, the analysis of the temperatures developed by the meteorite impact which produced the Ries crater at 14.7 m.y. ago is presented.  相似文献   
1000.
Macrospicules have been observed in H and He i D3, on the disk and above the limb. In 1975, a rate of 1400 (A day)–1 is inferred, and the ratio of equatorial to polar rates 2. D3 intensities are a few × 10–3 of the disk center, and do not decrease in coronal holes. The ratio of H to D3 intensities is 10. The integral number of macrospicules with D3 intensity I 0 is proportional to I 0 –1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号