首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   889篇
  免费   66篇
  国内免费   12篇
测绘学   14篇
大气科学   60篇
地球物理   290篇
地质学   330篇
海洋学   105篇
天文学   97篇
综合类   5篇
自然地理   66篇
  2024年   5篇
  2023年   8篇
  2022年   7篇
  2021年   25篇
  2020年   33篇
  2019年   35篇
  2018年   35篇
  2017年   39篇
  2016年   47篇
  2015年   40篇
  2014年   46篇
  2013年   51篇
  2012年   53篇
  2011年   61篇
  2010年   59篇
  2009年   53篇
  2008年   43篇
  2007年   41篇
  2006年   32篇
  2005年   32篇
  2004年   36篇
  2003年   24篇
  2002年   26篇
  2001年   18篇
  2000年   18篇
  1999年   11篇
  1998年   10篇
  1997年   11篇
  1996年   11篇
  1995年   5篇
  1994年   5篇
  1993年   6篇
  1992年   2篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
排序方式: 共有967条查询结果,搜索用时 15 毫秒
961.
Biomarkers of exposure and effect of pollutants were analyzed in croakers Micropogonias furnieri (Teleostei: Sciaenidae) captured in winter and summer in a polluted and in a non-polluted site at the Patos Lagoon estuary (Southern Brazil). Catalase and glutathione S-transferase activities (exposure biomarkers) and lipid peroxidation (effect biomarker) were analyzed in liver samples. Other two effect biomarkers were also studied: blood cells DNA damage (through comet assay and micronucleus test) and respiratory burst measurements. In a broad view, results point to an important seasonal variation of the biochemical biomarkers analyzed. However, data obtained clearly indicate that croakers collected in winter at the polluted site were subjected to a level of clastogenic agents sufficient to generate irreversible genetic damages (mutations) and impair the fish immune system.  相似文献   
962.
Fjords and estuaries exchange large amounts of solutes, gases, and particulates between fluvial and marine systems. These exchanges and their relative distributions of compounds/particles are partially controlled by stratification and water circulation. The spatial and vertical distributions of N2O, an important greenhouse gas, along with other oceanographic variables, are analyzed from the Reloncaví estuary (RE) (~41° 30′ S) to the gulf of Corcovado in the interior sea of Chiloé (43° 45′ S) during the austral winter. Freshwater runoff into the estuary regulated salinity and stratification of the water column, clearly demarking the surface (<5 m depth) and subsurface layer (>5 m depth) and also separating estuarine and marine influenced areas. N2O levels varied between 8.3 and 21 nM (corresponding to 80 and 170 % saturation, respectively), being significantly lower (11.8 ± 1.70) at the surface than in subsurface waters in the Reloncaví estuary (14.5 ± 1.73). Low salinity and NO3 ?, NO2 ?, and PO4 3? levels, as well as high Si(OH)4 values were associated with low surface N2O levels. Remarkably, an accumulation of N2O was observed in the subsurface waters of the Reloncaví sound, associated with a relatively high consumption of O2. The sound is exposed to increasing anthropogenic impacts from aquaculture and urban discharge, occurring simultaneously with an internal recirculation, which leads to potential signals of early eutrophication. In contrast, within the interior sea of Chiloé (ISC), most of water column was quasi homohaline and occupied by modified subantarctic water (MSAAW), which was relatively rich in N2O (12.6 ± 2.36 nM) and NO3 ? (18.3 ± 1.63 μM). The relationship between salinity, nutrients, and N2O revealed that water from the open ocean, entering into ISC (the Gulf of Corcovado) through the Guafo mouth, was the main source of N2O (up to 21 nM), as it gradually mixed with estuarine water. In addition, significant relationships between N2O excess vs. AOU and N2O excess vs. NO3 ? suggest that part of N2O is also produced by nitrification. Our results show that the estuarine and marine waters can act as light source or sink of N2O to the atmosphere (air–sea N2O fluxes ranged from ?1.57 to 5.75 μmol m?2 day?1), respectively; influxes seem to be associated to brackish water depleted in N2O that also caused a strong stratification, creating a barrier to gas exchange.  相似文献   
963.
Fe released into solution is isotopically lighter (enriched in the lighter isotope) than hornblende starting material when dissolution occurs in the presence of the siderophore desferrioxamine mesylate (DFAM). In contrast, Fe released from goethite dissolving in the presence of DFAM is isotopically unchanged. Furthermore, Δ56Fesolution-hornblende for Fe released to solution in the presence of ligands varies with the affinity of the ligand for Fe. The extent of isotopic fractionation of Fe released from hornblende also increases when experiments are agitated continuously. The Fe isotope fractionation observed during hornblende dissolution with organic ligands is attributed predominantly to retention of 56Fe in an altered surface layer, while the lack of isotopic fractionation during goethite dissolution in DFAM is consistent with the lack of an altered layer. When a siderophore-producing soil bacterium is added to the system (without added organic ligands), Fe released to solution from both hornblende and goethite differs isotopically from Fe in the bulk mineral: Δ56Fesolution-starting material = −0.56 ± 0.19 (hornblende) and −1.44 ± 0.16 (goethite). Increased isotopic fractionation is attributed in this case to the fact that as bacterial respiration depletes the system in oxygen and aqueous Fe is reduced, equilibration between aqueous ferrous and ferric iron creates a pool of isotopically heavy ferric iron that is assimilated by bacterial cells. Adsorption of isotopically heavy ferrous iron (Fe(II) enriched in the heavier isotope) or precipitation of isotopically heavy Fe minerals may also contribute to observed fractionations.To test whether these Fe isotope signatures are recorded in natural systems, we also investigated extractions of samples of soils from which the bacteria were isolated. These extractions show variability in the isotopic signatures of exchangeable Fe and Fe oxyhydroxide fractions from one soil sample to another, but exchangeable Fe is observed to be lighter than Fe in soil Fe oxyhydroxides and hornblende. This observation is consistent with isotopically light Fe-organic complexes in soil pore water derived from the Fe-silicate starting materials in the presence of growing microorganisms, as documented in experiments reported here. The contributions from phenomena including organic ligand-promoted nonstoichiometric dissolution of Fe silicates, uptake of ferric iron by organisms, adsorption of isotopically heavy ferrous iron, and precipitation of iron minerals should create complex isotopic signatures in soils. Better understanding of these processes and the timescales over which they contribute to fractionation is needed.  相似文献   
964.
The influence of Zn speciation on Zn transport by drainage from different soils to surface water is examined in a stream catchment in an agricultural area. Drainage waters were collected from two types of soils, a mineral soil (MS) and a soil rich in organic matter (OS) by means of artificial drainage pipes. The speciation of dissolved Zn in the stream and the drainage waters was determined using ligand-exchange and voltammetry. About 50–95% of dissolved Zn is bound in strong complexes, and the free Zn2+ ion concentration is in the range of 1–16% of dissolved Zn. A substantial part of Zn is present in weaker organic or inorganic complexes. The simulated Zn speciation using the WHAM VI model is compared to the determined speciation. Free Zn2+ concentrations predicted by the WHAM VI model are generally higher than the analytically determined free Zn2+, but are mostly within the same order of magnitude. Effects of different soil organic matter content on Zn speciation and transport are discussed. Zn speciation in the drainage at the OS site is influenced by the distribution of organic matter between the solid and solution phase. The abundant organic Zn complexes in solution contribute to facilitate Zn transport from soil into surface waters, through the drainage at the OS site. Drainage from the OS site contributes about twice as much Zn input to the receiving water as the MS soil, as related to specific area. The mineral soil contains much lower organic matter, and a part of Zn bound with inorganic phases can hardly be released by dissolved organic ligands, leading to much higher Zn retention at the MS site.  相似文献   
965.
New analyses have been performed in order to enhance the data-set on the independent ages of four glasses that have been proposed as reference materials for fission-track dating. The results are as follows. Moldavite - repeated 40Ar/39Ar age determinations on samples from deposits from Bohemia and Moravia yielded an average of 14.34 ± 0.08 Ma. This datum agrees with other recent determinations and is significantly younger than the 40Ar/39Ar age of 15.21 ± 0.15 Ma determined in the early 1980s. Macusanite (Peru) -four K-Ar ages ranging from 5.44 ± 0.06 to 5.72 ± 0.12 Ma have been published previously. New 40Ar/39Ar ages gave an average of 5.12 ± 0.04 Ma. Plateau fission-track ages determined using the IRMM-540 certified glass and U and Th thin films for neutron fluence measurements agree better with these new 40Ar/39Ar ages than the previously published ages. Roccastrada glass (Italy) - a new 40Ar/39Ar age, 2.45 ± 0.04 Ma, is consistent with previous determinations. The Quiron obsidian (Argentina) is a recently discovered glass that has been proposed as an additional reference material for its high spontaneous track density (around 100 000 cm-2). Defects that might produce "spurious" tracks are virtually absent. An independent 40Ar/39Ar age of 8.77 ± 0.09 Ma was determined and is recommended for this glass. We believe that these materials, which will be distributed upon request to fission-track groups, will be very useful for testing system calibrations and experimental procedures.  相似文献   
966.
967.
We investigate the geology of Altar North (Cu–Au) and Quebrada de la Mina (Au) porphyry deposits located in San Juan Province (Argentina), close to the large Altar porphyry copper deposit (995 Mt, 0.35% Cu, 0.083 g/t Au), to present constraints on the magmatic processes that occurred in the parental magma chambers of these magmatic-hydrothermal systems. Altar North deposit comprises a plagioclase-amphibole-phyric dacite intrusion (Altar North barren porphyry) and a plagioclase-amphibole-biotite-phyric dacite stock (Altar North mineralized porphyry, 11.98 ± 0.19 Ma). In Quebrada de la Mina, a plagioclase-amphibole-biotite-quartz-phyric dacite stock (QDM porphyry, 11.91 ± 0.33 Ma) crops out. High Sr/Y ratios (92–142) and amphibole compositions of Altar North barren and QDM porphyries reflect high magmatic oxidation states (fO2 = NNO +1.1 to +1.6) and high fH2O conditions in their magmas. Zones and rims enriched in anorthite (An37–48), SrO (0.22–0.33 wt.%) and FeO (0.21–0.37 wt.%) in plagioclase phenocrysts are evidences of magmatic recharge processes in the magma chambers. Altar North and Quebrada de la Mina intrusions have relatively homogeneous isotopic compositions (87Sr/86Sr(t) = 0.70450–0.70466, εNd(t) = +0.2 to +1.2) consistent with mixed mantle and crust contributions in their magmas. Higher Pb isotopes ratios (207Pb/204Pb = 15.6276–15.6294) of these intrusions compared to other porphyries of the district, reflect an increase in the assimilation of high radiogenic Pb components in the magmas. Ages of zircon xenocrysts (297, 210, 204, 69 Ma) revealed that the magmas have experienced assimilation of Miocene, Cretaceous, Triassic and Carboniferous crustal rocks.Fluids that precipitated sulfides in the Altar deposit may have remobilized Pb from the host rocks, as indicated by the ore minerals being more radiogenic (207Pb/204Pb = 15.6243–15.6269) than their host intrusions. Au/Cu ratio in Altar porphyries (average Au/Cu ratio of 0.14 × 10?4 by weight in Altar Central) is higher than in the giant Miocene porphyry deposits located to the south: Los Pelambres, Río Blanco and Los Bronces (Chile) and Pachón (Argentina). We suggest that the increase in Au content in the porphyries of this region could be linked to the assimilation of high radiogenic Pb components in the magmas within these long-lived maturation systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号