首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   862篇
  免费   66篇
  国内免费   12篇
测绘学   14篇
大气科学   57篇
地球物理   286篇
地质学   313篇
海洋学   105篇
天文学   93篇
综合类   6篇
自然地理   66篇
  2024年   5篇
  2023年   8篇
  2022年   7篇
  2021年   25篇
  2020年   33篇
  2019年   35篇
  2018年   35篇
  2017年   39篇
  2016年   47篇
  2015年   39篇
  2014年   46篇
  2013年   50篇
  2012年   50篇
  2011年   59篇
  2010年   59篇
  2009年   50篇
  2008年   42篇
  2007年   40篇
  2006年   29篇
  2005年   30篇
  2004年   35篇
  2003年   22篇
  2002年   24篇
  2001年   16篇
  2000年   17篇
  1999年   11篇
  1998年   9篇
  1997年   11篇
  1996年   10篇
  1995年   5篇
  1994年   5篇
  1993年   6篇
  1992年   2篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   5篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有940条查询结果,搜索用时 31 毫秒
451.
Abstract

Seasonality is an important hydrological signature for catchment comparison. Here, the relevance of monthly precipitation–runoff polygons (defined as scatter points of 12 monthly average precipitation–runoff value pairs connected in the chronological monthly sequence) for characterizing seasonality patterns was investigated to describe the hydrological behaviour of 10 catchments spanning a climatic gradient across the northern temperate region. Specifically, the research objectives were to: (a) discuss the extent to which monthly precipitation–runoff polygons can be used to infer active hydrological processes in contrasting catchments; (b) test the ability of quantitative metrics describing the shape, orientation and surface area of monthly precipitation–runoff polygons to discriminate between different seasonality patterns; and (c) examine the value of precipitation–runoff polygons as a basis for catchment grouping and comparison. This study showed that some polygon metrics were as effective as monthly average runoff coefficients for illustrating differences between the 10 catchments. The use of precipitation–runoff polygons was especially helpful to look at the dynamics prevailing in specific months and better assess the coupling between precipitation and runoff and their relative degree of seasonality. This polygon methodology, linked with a range of quantitative metrics, could therefore provide a new simple tool for understanding and comparing seasonality among catchments.

Editor Z.W. Kundzewicz; Associate editor K. Heal

Citation Ali, G., Tetzlaff, D., Kruitbos, L., Soulsby, C., Carey, S., McDonnell, J., Buttle, J., Laudon, H., Seibert, J., McGuire, K., and Shanley, J., 2013. Analysis of hydrological seasonality across northern catchments using monthly precipitation–runoff polygon metrics. Hydrological Sciences Journal, 59 (1), 56–72.  相似文献   
452.
453.
In the discontinuous permafrost zone of the Northwest Territories (NWT), Canada, snow covers the ground surface for half the year. Snowmelt constitutes a primary source of moisture supply for the short growing season and strongly influences stream hydrographs. Permafrost thaw has changed the landscape by increasing the proportional coverage of permafrost-free wetlands at the expense of permafrost-cored peat plateau forests. The biophysical characteristics of each feature affect snow water equivalent (SWE) accumulation and melt rates. In headwater streams in the southern Dehcho region of the NWT, snowmelt runoff has significantly increased over the past 50 years, despite no significant change in annual SWE. At the Fort Simpson A climate station, we found that SWE measurements made by Environment and Climate Change Canada using a Nipher precipitation gauge were more accurate than the Adjusted and Homogenized Canadian Climate Dataset which was derived from snow depth measurements. Here, we: (a) provide 13 years of snow survey data to demonstrate differences in end-of-season SWE between wetlands and plateau forests; (b) provide ablation stake and radiation measurements to document differences in snow melt patterns among wetlands, plateau forests, and upland forests; and (c) evaluate the potential impact of permafrost-thaw induced wetland expansion on SWE accumulation, melt, and runoff. We found that plateaus retain significantly (p < 0.01) more SWE than wetlands. However, the differences are too small (123 mm and 111 mm, respectively) to cause any substantial change in basin SWE. During the snowmelt period in 2015, wetlands were the first feature to become snow-free in mid-April, followed by plateau forests (7 days after wetlands) and upland forests (18 days after wetlands). A transition to a higher percentage cover of wetlands may lead to more rapid snowmelt and provide a more hydrologically-connected landscape, a plausible mechanism driving the observed increase in spring freshet runoff.  相似文献   
454.
455.
Wastewater treatment plants are major point-sources of nutrients to streams globally, but the impact on receiving streams is not always clear. Previous research has shown mixed responses in receiving streams, with some showing no net retention through in-stream processing for large distances below plants and some showing high rates of processing and retention. This study focuses on Sandy Run, a small, suburban stream in Montgomery County, PA, that receives effluent from two plants, where effluent makes up an estimated 50% of outlet discharge at baseflow. Two sites were monitored in late summer baseflow using high-temporal loggers to evaluate nitrate and phosphate retention with distance below the plants. Effluent quantity was monitored immediately below the effluent outfalls using specific conductivity as a conservative signal of solute fluctuations throughout the day. A site 1 km downstream showed diel nitrate changes, but despite moderate gross primary productivity and ecosystem respiration rates, there was little net retention of nutrients and the diel nitrate signal can be attributed to advection and dispersion of variable upstream effluent. A site 5.4 km below the plant showed a diel nitrate signal as well, but baseflow daily hysteresis plots of nitrate and specific conductivity showed the effluent and nitrate peaks did not coincide. Instead, the effluent input signal was seen overnight, but there was in-stream removal and release processes during the day. Over the distance to this site, the stream was metabolizing some of the high nutrient loads, although gross primary productivity and ecosystem respiration rates were lower. It is important to understand subdaily changes in nutrient processing to fully quantify the impacts of effluent on small streams at different scales. Furthermore, looking at the diel signal without considering conservative transport would overestimate in-stream processing.  相似文献   
456.
Numerous socio-economic activities depend on the seasonal rainfall and groundwater recharge cycle across the Central American Isthmus. Population growth and unregulated land use changes resulted in extensive surface water pollution and a large dependency on groundwater resources. This work combines stable isotope variations in rainfall, surface water, and groundwater of Costa Rica, Nicaragua, El Salvador, and Honduras to develop a regionalized rainfall isoscape, isotopic lapse rates, spatial–temporal isotopic variations, and air mass back trajectories determining potential mean recharge elevations, moisture circulation patterns, and surface water–groundwater interactions. Intra-seasonal rainfall modes resulted in two isotopically depleted incursions (W-shaped isotopic pattern) during the wet season and two enriched pulses during the mid-summer drought and the months of the strongest trade winds. Notable isotopic sub-cloud fractionation and near-surface secondary evaporation were identified as common denominators within the Central American Dry Corridor. Groundwater and surface water isotope ratios depicted the strong orographic separation into the Caribbean and Pacific domains, mainly induced by the governing moisture transport from the Caribbean Sea, complex rainfall producing systems across the N-S mountain range, and the subsequent mixing with local evapotranspiration, and, to a lesser degree, the eastern Pacific Ocean fluxes. Groundwater recharge was characterized by (a) depleted recharge in highland areas (72.3%), (b) rapid recharge via preferential flow paths (13.1%), and enriched recharge due to near-surface secondary fractionation (14.6%). Median recharge elevation ranged from 1,104 to 1,979 m a.s.l. These results are intended to enhance forest conservation practices, inform water protection regulations, and facilitate water security and sustainability planning in the Central American Isthmus.  相似文献   
457.
ABSTRACT

Urban greening can enhance sustainability and liveability, through conserving biodiversity, mitigating urban heat and enhancing people’s health and wellbeing. However, urban greening is complex, as it occurs in unique ecological settings, with social, cultural and economic factors shaping the forms it takes. This raises questions about the governance of urban greening, including what counts as ‘good governance’. In this paper, we first outline principles of good governance drawn from the natural resource management context. We then present four urban greening initiatives from Melbourne Australia representing different scales, land tenures and organising structures. Following this, we analyse how governance of the four initiatives addresses good governance principles. Our analysis shows that there are diverse ways in which urban greening can be practiced and governed. The importance of more ‘informal’ initiatives should not be discounted relative to formalised initiatives, as a spectrum of approaches can be seen as strength. Further, in determining what constitutes good governance, the standards against which initiatives are assessed should be tailored to their specific circumstances, and consider impacts to the environment itself. These findings point to good urban greening governance being both situated and principled.  相似文献   
458.
Surface wave analysis is usually applied as a 1D tool to estimate VS profiles. Here we evaluate the potential of surface wave analysis for the case of lateral variations. Lateral variations can be characterized by exploiting the data redundancy of the ground roll contained in multifold seismic data. First, an automatic processing procedure is applied that allows stacking dispersion curves obtained from different records and which retrieves experimental uncertainties. This is carried out by sliding a window along a seismic line to obtain an ensemble of dispersion curves associated to a series of spatial coordinates. Then, a laterally constrained inversion algorithm is adopted to handle 2D effects, although a 1D model has been assumed for the forward problem solution. We have conducted different tests on three synthetic data sets to evaluate the effects of the processing parameters and of the constraints on the inversion results. The same procedure, applied to the synthetic data, was then tested on a field case. Both the synthetic and field data show that the proposed approach allows smooth lateral variations to be properly retrieved and that the introduction of lateral constraints improves the final result compared to individual inversions.  相似文献   
459.
Time-dependent models for seismic hazard and earthquake probabilities are at the leading edge of research nowadays. In the framework of a 2-year national Italian project (2005–2007), we have applied the Brownian passage time (BPT) renewal model to the recently released Database of Individual Seismogenic Sources (DISS) to compute earthquake probability in the period 2007–2036. Observed interevent times on faults in Italy are absolutely insufficient to characterize the recurrence time. We, therefore, derived mean recurrence intervals indirectly. To estimate the uncertainty of the results, we resorted to the theory of error propagation with respect to the main parameters: magnitude and slip rate. The main issue concerned the high variability of slip rate, which could hardly be reduced by exploiting geodetic constraints. We did some validation tests, and interesting considerations were derived from seismic moment budgeting on the historical earthquake catalog. In a time-dependent perspective, i.e., when the date of the last event is known, only 10–15% of the 115 sources exhibit a probability of a characteristic earthquake in the next 30 years higher than the equivalent Poissonian probabilities. If we accept the Japanese conventional choice of probability threshold greater than 3% in 30 years to define “highly probable sources,” mainly intermediate earthquake faults with characteristic M < 6, having an elapsed time of 0.7–1.2 times the recurrence interval are the most “prone” sources. The number of highly probable sources rises by increasing the aperiodicity coefficient (from 14 sources in the case of variable α ranging between 0.22 and 0.36 to 31 sources out of 115 in the case of an α value fixed at 0.7). On the other hand, in stationary time-independent approaches, more than two thirds of all sources are considered probabilistically prone to an impending earthquake. The performed tests show the influence of the variability of the aperiodicity factor in the BPT renewal model on the absolute probability values. However, the influence on the relative ranking of sources is small. Future developments should give priority to a more accurate determination of the date of the last seismic event for a few seismogenic sources of the DISS catalog and to a careful check on the applicability of a purely characteristic model.  相似文献   
460.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号