首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   2篇
  国内免费   2篇
测绘学   1篇
地球物理   2篇
地质学   22篇
海洋学   1篇
自然地理   1篇
  2017年   1篇
  2014年   2篇
  2013年   1篇
  2012年   5篇
  2011年   1篇
  2009年   3篇
  2008年   2篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1991年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
21.
This study examines the sedimentary response to a tectonically driven relative sea‐level fall that occurred in the Neuquén Basin, west‐central Argentina, during the late Early Valanginian (Early Cretaceous). At this time the basin lay behind the emergent Andean magmatic arc to the west. Following the relative sea‐level fall, sedimentation was limited to the central part of the Neuquén Basin, with the deposition of a predominantly clastic, continental to shallow marine wedge on top of basinal black shales. This lowstand wedge is called the Mulichinco Formation and consists of a third‐order sequence that lasted about 2 Myr and contains high frequency lowstand, transgressive, and highstand deposits. Significant variations in facies, depositional architecture, and internal organization of the sequence occur along depositional strike. These variations are attributed mainly to tectonic and topographic controls upon sediment flux, basin gradient, fault tilting, and shifting of the depocentre through time. These controls were ultimately related to asymmetrically distributed tectonic activity that was greater towards the magmatic arc in the west. The superposition of fluvial deposits directly upon offshore facies provides unequivocal evidence for a sequence boundary at the base of the Mulichinco Formation. However, the Mulichinco sequence boundary is marked by shallow, low erosional relief and widespread fluvial deposition. The surface lacks prominent valleys traditionally associated with sequence boundaries. This non‐erosive sequence boundary geometry is attributed to the ramp‐type geometry of the basin and/or rapid uplift that limited stratigraphic adjustment to base‐level fall. Significant along‐strike facies changes and a low‐relief sequence boundary are attributes that may be common in tectonically active, semi‐enclosed basins (e.g. shallow back‐arc basins, foreland basins).  相似文献   
22.
Elemental, isotopic, and mineral compositions as well as rocktextures were examined in samples from Popocatépetl volcanoand immediately surrounding monogenetic scoria cones of theSierra Chichinautzin Volcanic Field, central Mexico. Magma generationis strongly linked to the active subduction regime to the south.Rocks range in composition from basalt to dacite, but Popocatépetlsamples are generally more evolved and have mineral compositionsand textures consistent with more complicated, multi-stage evolutionaryprocesses. High-Mg calc-alkaline and more alkaline primitivemagmas are present in the monogenetic cones. Systematic variationsin major and trace element compositions within the monogeneticsuite can mostly be explained by polybaric fractional crystallizationprocesses in small and short-lived magmatic systems. In contrast,Popocatépetl stratovolcano has produced homogeneous magmacompositions from a shallow, long-lived magma chamber that isperiodically replenished by primitive basaltic magmas. The currenteruption (1994–present) has produced silicic dome lavasand pumice clasts that display mingling of an evolved daciticcomponent with an olivine-bearing mafic component. The longevityof the magma chamber hosted in Cretaceous limestones has fosteredinteraction with these rocks as evidenced by the chemical andisotopic compositions of the different eruptive products, contact-metamorphosedxenoliths, and fumarolic gases. Popocatépetl volcanicproducts display a considerable range of 87Sr/86Sr (0·70397–0·70463)and Nd (+6·2 to +3·0) whereas Pb isotope ratiosare relatively homogeneous (206Pb/204Pb 18·61–18·70;207Pb/204Pb 15·56–15·60). KEY WORDS: Popocatépetl; Sierra Chichinautzin Volcanic Field; arc petrogenesis; radiogenic isotopes  相似文献   
23.
The quantification and prediction of damage due to different seismic actions to structure types of different strength is an important problem not yet solved in the Earthquake Engineering field. In addition, owing to the fact that macroseismic information cannot be used directly in dynamic calculations, a new problem appears when these are the only kind of data available. Thus, there is a need to estimate a parameter to relate the energy of the ground motion and the damage occurrence, and eventually achieve a better seismic risk assessment. After the study and review of some representative potential damage parameters, attention has been paid to the Arias intensity (unfiltered and filtered in certain frequency ranges) and the Cumulative Absolute velocity (CAV) as the parameters to evaluate the energy of movement, and to relate them with the observed damage. The data used to infer these correlations have been provided by the ENEA-ENEL (Italy). The information consists of strong motion records from the Campano Lucano (1980), Umbria (1984) and Lazio-Abruzzo (1984) earthquakes, and data of damage to buildings in the vicinity of recording instruments (within a maximum radius of 300 m, where the soil conditions remain constant). In this paper, some relations have been obtained to quantify the damage level for different seismic inputs. The results suggest that unfiltered Arias intensity and CAV (for calculation threshold 20 cm/s2) correlate well with the macroseismic information used. Best fits are obtained between the quoted parameters and the observed damage in type A structures. © 1997 by John Wiley & Sons, Ltd.  相似文献   
24.
A direct boundary element method for calculating the two-dimensional scattering of seismic waves from irregular topographies and buried valleys due to incident P-, SV- and Rayleigh waves is employed to model a section of the Mexico City Valley. The method has been formulated with isoparametric quadratic boundary elements and contains, with respect to previous works in the field, some improvements that are briefly presented. Because the Mexico City Valley is relatively flat and shallow and the contrast of S-waves between the clays and the basement rock is very high, it is believed that the one-dimensional theory is enough to explain the amplification patterns. Although this is true for most sites, results from recent accelerometric data suggest that two- and three-dimensional models are needed to explain the amplification behaviour at some places. In this work, two accelerometric sites have been chosen: Site 84 to probe that the one-dimensional model works well for most sites, and Site TB, as an example of irregular response. The two-dimensional method presented here was used to model a section of the valley where site TB is located, showing that this method yields results closer to the observations than the one-dimensional approach. © 1997 John Wiley & Sons, Ltd.  相似文献   
25.
Nummulites, a particularly abundant and diverse genus of larger benthonic foraminifera, formed huge accumulations (banks) during the Eocene, which are often good hydrocarbon reservoirs, especially in North Africa. Despite their economical interest, these accumulations are not well‐understood and their origin is still under discussion. Reasons for this debate are the absence of living Nummulites accumulations and the high‐variability of facies, including the size, shape and extension of the banks, which reflect the array of processes controlling sediment production and accumulation. The nummulitic banks near Santa María de Buil, in the Ainsa Basin (South Pyrenean Foreland Basin) are composed of recurrent facies associations within mappable bed units bounded by physical surfaces. The depositional processes that produced the Nummulites deshayesi accumulations are interpreted considering the shape of the banks, the type of bounding surfaces, the distribution of sedimentary textures, Nummulites test shapes and the associated skeletal components within the banks. This integrative analysis indicates that nummulitic banks accumulated from mass flows, with very poor sediment sorting. Textural and compositional differences among banks suggest that globose Nummulites thrived in the shallower part of the mesophotic zone with abundant nummulithoclasts, whereas flat nummulitic forms thrived in deeper mesophotic, clay‐dominated settings. Interbedded with nummulitic banks, coral biostromes and coral mounds bearing Operculina, Discocyclina and Asterocyclina, represent in situ accumulation near the base of the photic zone. Internal waves (waves that propagate along the pycnocline) are thought to be the triggering mechanism for the density flows. Internal waves and induced bottom currents are sporadic but strong enough to bring sediments into suspension. In contrast to surface waves (both fair‐weather and storm), whose impact is strongest near the sea surface and decreases with bathymetry, the impact of internal waves is usually strongest in the mid‐shelf region and weaker in shallow water. This explains the compositional character of the nummulitic banks.  相似文献   
26.
We document experiments on a natural metapelite in the range650–775°C, 6–14 kbar, 10 wt % of added water,and 700–850°C, 4–10 kbar, no added water. Staurolitesystematically formed in the fluid-present melting experimentsabove 675°C, but formed only sporadically in the fluid-absentmelting experiments. The analysis of textures, phase assemblages,and variation of phase composition and Fe–Mg partitioningwith P and T suggests that supersolidus staurolite formed at(near-) equilibrium during fluid-present melting reactions.The experimental results are used to work out the phase relationsin the system K2O–Na2O–FeO–MgO–Al2O3–SiO2–H2Oappropriate for initial melting of metapelites at the upperamphibolite facies. The PT grid developed predicts theexistence of a stable PT field for supersolidus staurolitethat should be encountered by aluminous Fe-rich metapelitesduring fluid-present melting at relatively low temperature andintermediate pressures (675–700°C, 6–10 kbarfor XH2O = 1, in the KNFMASH system), but not during fluid-absentmelting. The implications of these findings for the scarcityof staurolite in migmatites are discussed. KEY WORDS: metapelites; migmatites; partial melting; PT grid; staurolite  相似文献   
27.
The Pleistocene speleothems of Sa Bassa Blanca cave, Mallorca, are excellent indicators of palaeoclimate variations, and are samples that allow evaluation of the products and processes of mixing‐zone diagenesis in an open‐water cave system. Integrated stratigraphic, petrographic and geochemical data from a horizontal core of speleothem identified two main origins for speleothem precipitates: meteoric‐marine mixing zone and meteoric‐vadose zone. Mixing‐zone precipitates formed at and just below the water–air interface of cave pools during interglacial times, when the cave was flooded as a result of highstand sea‐level. Mixing‐zone precipitates include bladed and dendritic high‐Mg calcite, microporous‐bladed calcite with variable Mg content, and acicular aragonite; their presence suggests that calcium‐carbonate cementation is significant in the studied mixing‐zone system. Fluid inclusion salinities, δ13C and δ18O compositions of the mixing‐zone precipitates suggest that mixing ratio was not the primary control on whether precipitation or dissolution occurred, rather, the proximity to the water table and degassing of CO2 at the interface, were the major controls on precipitation. Thus, simple two‐end‐member mixing models may apply only in mixing zones well below the water table. Meteoric‐vadose speleothems include calcite and high‐Mg calcite with columnar and bladed morphologies. Vadose speleothems precipitated during glacial stages when sea level was lower than present. Progressive increase in δ13C and δ18O of the vadose speleothems resulted from cooling temperatures and more positive seawater δ18O associated with glacial buildup. Such covariation could be considered as a valid alternative to models predicting invariant δ18O and highly variable δ13C in meteoric calcite. Glacio‐eustatic oscillations of sea‐level are recorded as alternating vadose and mixing‐zone speleothems. Short‐term climatic variations are recorded as alternating aragonite and calcite speleothems precipitated in the mixing zone. Fluid‐inclusion and stable‐isotope data suggest that aragonite, as opposed to calcite, precipitated during times of reduced meteoric recharge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号