Granule ripples are found mainly in four regions of the Kumtagh Desert in China; they are characterized by an asymmetrical shape, with gentle lower slopes on both sides and abrupt crests. The ripples tend to be oriented perpendicular to the prevailing winds, except when they form near obstacles such as yardangs. The wavelengths (λ) range between 0·31 m and 26 m and heights (h) range from 0·015 m to 1 m. The relationship between wavelength and height can be described by a simple linear function, and the mean ripple index (λ/h) is about 20·4 for the study sites. The sediments are poorly sorted, with negative to very negative skewness at lee and stoss slopes and between‐ripple troughs, which confirms the ‘poured in’ and ‘shadow’ appearance described by previous researchers. The bimodal or trimodal distributions of grains (with modes of ?1·16φ, ?0·5φ and 3·16φ) and the enrichment of coarse particles at the ripple surface (with coarse granule contents ranging between 5·2% and 62·1%) indicate that the underlying layer is the original sediment source and that the granule ripples resist erosional processes. Although the impact of saltating particles and, consequently, the creep and reptation of coarse grains are responsible for granule ripple initiation at a micro‐scale, however, the characteristics of local sediments, wind regimes and topographical obstacles, as well as the feedbacks among bedform and airflow, more strongly affect the development and alignment of granule ripples at a macro‐scale. 相似文献
In order to discover the range of various errors in Chinese precipitation measurements and seek a correction method, 30 precipitation evaluation stations were set up countrywide before 1993. All the stations are reference stations in China. To seek a correction method for wind-induced error, a precipitation correction instrument called the "horizontal precipitation gauge" was devised beforehand. Field intercomparison observations regarding 29,000 precipitation events have been conducted using one pit gauge, two elevated operational gauges and one horizontal gauge at the above 30 stations. The range of precipitation measurement errors in China is obtained by analysis of intercomparison measurement results. The distribution of random errors and systematic errors in precipitation measurements are studied in this paper. A correction method, especially for wind-induced errors, is developed. The results prove that a correlation of power function exists between the precipitation amount caught by the horizontal gauge and the absolute difference of observations implemented by the operational gauge and pit gauge. The correlation coefficient is 0.99. For operational observations, precipitation correction can be carried out only by parallel observation with a horizontal precipitation gauge. The precipitation accuracy after correction approaches that of the pit gauge. The correction method developed is simple and feasible. 相似文献
The equilibrium phase relations of a mafic durbachite (53 wt.% SiO2) from the Třebíč pluton, representative of the Variscan ultrapotassic magmatism of the Bohemian Massif (338–335 Ma), have
been determined as a function of temperature (900–1,100°C), pressure (100–200 MPa), and H2O activity (1.1–6.1 wt.% H2O in the melt). Two oxygen fugacity ranges were investigated: close to the Ni–NiO (NNO) buffer and 2.6 log unit above NNO
buffer (∆NNO + 2.6). At 1,100°C, olivine is the liquidus phase and co-crystallized with phlogopite and augite at 1,000°C for
the whole range of investigated pressure and water content in the melt. At 900°C, the mineral assemblage consists of augite
and phlogopite, whereas olivine is not stable. The stability field of both alkali feldspar and plagioclase is restricted to
low pressure (100 MPa) at nearly water-saturated conditions (<3–4 wt.% H2O) and T < 900°C. A comparison between experimental products and natural minerals indicates that mafic durbachites have a near-liquidus
assemblage of olivine, augite, Ti-rich phlogopite, apatite and zircon, followed by alkali feldspar and plagioclase, similar
to the mineral assemblage of minette magma. Natural amphibole, diopside and orthopyroxene were not reproduced experimentally
and probably result from sub-solidus reactions, whereas biotite re-equilibrated at low temperature. The crystallization sequence
olivine followed by phlogopite and augite reproduces the sequence inferred in many mica-lamprophyre rocks. The similar fractionation
trends observed for durbachites and minettes indicate that mafic durbachites are probably the plutonic equivalents of minettes
and that K- and Mg-rich magmas in the Bohemian Massif may have been generated from partial melting of a phlogopite–clinopyroxene-bearing
metasomatized peridotite. Experimental melt compositions also suggest that felsic durbachites can be generated by simple fractionation
of a more mafic parent and mixing with mantle-derived components at mid crustal pressures. 相似文献