首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
  国内免费   4篇
测绘学   1篇
地球物理   7篇
地质学   11篇
海洋学   2篇
天文学   3篇
自然地理   1篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   4篇
  2011年   1篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
  1996年   1篇
  1994年   1篇
  1969年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
21.
The solar wind-induced drag on magnetically large comets is estimated as follows. As the comet approaches the sun, solar radiation striking the comet surface generates a surrounding neutral atmosphere which is subsequently ionized. The resulting plasma cloud interacts with the solar wind to produce a comet magnetosphere and associated collision-free shock wave. An approximation to the accompanying drag is obtained using the similarity between the comet magnetosphere and that of the earth, and is shown to be much less than the mechanical mass loss force.  相似文献   
22.
Late-glacial (17–11 cal ka BP) pollen records from midwestern North America show similar vegetation trends; however, poor dating resolution, wide-interval pollen counts, and variable sedimentation rates have prevented the direct correlation with the North Atlantic Event Stratigraphy as represented in the Greenland ice-core records, thus preventing the understanding of the teleconnections and mechanisms of late-Quaternary events in the Northern Hemisphere. The widespread occurrence of late-glacial vegetation and climates with no modern analogs also hinders late-glacial climate reconstructions. A high-resolution pollen record with a well-controlled age model from Crystal Lake in northeastern Illinois reveals vegetation and climate conditions during the late-glacial and early Holocene intervals. Late-glacial Crystal Lake pollen assemblages, dominated by Picea mariana and Fraxinus nigra with lesser amounts of Abies and Larix, suggest relatively wet climate despite fluctuations between colder and warmer temperatures. Vegetation changes at Crystal Lake are coeval with millennial-scale trends in the NGRIP ice-core record, but major shifts in vegetation at Crystal Lake lag the NGRIP record by 300–400 yr. This lag may be due to the proximity of the Laurentide ice sheet, the ice sheet's inherent slowness in response to rapid climate changes, and its effect on frontal boundary conditions and lake-effect temperatures.  相似文献   
23.
The Parque Nacional Torres Del Paine and surrounding area in the Magallanes foreland basin in Chilean Patagonia is the site for numerous lakes fed by glaciers and rivers in the Andean highlands to the west. The lakes are elongate and have conspicuously systematic orientations. We hypothesize that the origin of the oriented lakes lies in the fault system, composed of a right-lateral strike-slip fault set oriented 58° from north, a left-lateral strike-slip set oriented 87°, and a thrust fault set oriented 167°, that exists within the underlying rocks. To test this hypothesis quantitatively, we determined the shape and orientation of the lakes by fitting each lake with an ellipse of appropriate aspect ratio, and later with multiple ellipses consistent with the composite geometry of some lakes. We then examined the faults in the area in terms of their kinematics, orientation and distribution. The distribution of lake orientations showed three distinct groups which appear to correspond to the three main fault groups. For lakes fitted with multiple ellipses, the difference in means between the right-lateral, left-lateral, and thrust faults and their corresponding groups of lakes are 3.05°, 1.57°, and 5.17°. Using a Kolmogorov–Smirnov (K–S) statistical test to compare the orientations of faults with respect to the lakes suggests that there is not a strongly significant difference between the fault orientations and the corresponding lake groups. These results indicate that the faults have a profound control on the orientation, shape, and distribution of the lakes. We attribute this to faults and their damage zones being weaker and therefore prone to a faster rate of erosion, and to stress perturbations associated with discontinuous faults resulting in localized high density fracturing and surface subsidence. These results have implications for lake and drainage system morphologies in other foreland basins along the Andes and other similar settings.  相似文献   
24.
After decades of repose, Puyehue-Cordón Caulle Volcano (Chile) erupted in June 2011 following a month of continuously increasing seismic activity. The eruption dispersed a large volume of rhyolitic tephra over a wide area and was characterized by complex dynamics. During the initial climactic phase of the eruption (24–30 h on 4–5 June), 11–14-km-high plumes dispersed most of the erupted tephra eastward towards Argentina, reaching as far as the Atlantic Ocean. This first eruptive phase was followed by activity of lower intensity, leading to the development of a complex stratigraphic sequence, mainly due to rapid shifts in wind direction and eruptive style. The resulting tephra deposits consist of 13 main layers grouped into four units. Each layer was characterized based on its dispersal direction, sedimentological features, and on the main characteristics of the juvenile fraction (texture, density, petrography, chemistry). The lowest part of the eruptive sequence (Unit I), corresponding to the tephra emitted between 4 and 5 June, is composed of alternating lapilli layers with a total estimated volume of ca. 0.75 km3; these layers record the highest intensity phase, during which a bent-over plume dispersed tephra towards the southeast-east, with negligible up-wind sedimentation. Products emitted during 5–6 June (Unit II) signaled an abrupt shift in wind direction towards the north, leading to the deposition of a coarse ash deposit in the northern sector (ca. 0.21 km3 in volume), followed by a resumption of easterly directed winds. A third phase (Unit III) began on 7 June and resulted in tephra deposits in the eastern sector and ballistic bombs around the vent area. A final phase (Unit IV) started after 15 June and was characterized by the emission of fine-grained white tephra from ash-charged plumes during low-level activity and the extrusion of a viscous lava flow. Timing and duration of the first eruptive phases were constrained based on comparison of the dispersal of the main tephra layers with satellite images, showing that most of the tephra was emitted during the first 72 h of the event. The analyzed juvenile material tightly clusters within the rhyolitic field, with negligible chemical variations through the eruptive sequence. Textural observations reveal that changes in eruption intensity (and consequently in magma ascent velocity within the conduit) and complex interactions between gas-rich and gas-depleted magma portions during ascent resulted in vesicular clasts with variable degrees of shear localization, and possibly in the large heterogeneity of the juvenile material.  相似文献   
25.
Previous researchers proposed that trachybasalt temper with “poikilitic” sanidine, found in pottery from the Mesa Verde region of the American Southwest, was procured along the eastern Chuska Mountains. This served as one line of evidence that Chaco Canyon was a regional trade center linked to the Chuska Mountains in the ninth to thirteenth centuries. Recent geologic studies, however, revealed other potential sources for the trachybasalt temper. A comparison of petrographic features and geochemical signatures of poikilitic sanidine in rock samples and potsherds shows no definitive correlation of temper materials and a specific geologic source. Several outcrops of trachybasalt are identified as less viable prospects, but the results do not support the idea that the sanidine‐rich temper was exclusively gathered in the Chuska Mountains. This conclusion opens up the possibility that raw materials were gathered from local sources that were more accessible, reducing the dependence on a regional trade center.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号