首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   528172篇
  免费   61019篇
  国内免费   79784篇
测绘学   47994篇
大气科学   62622篇
地球物理   112036篇
地质学   239505篇
海洋学   68653篇
天文学   56383篇
综合类   25180篇
自然地理   56602篇
  2024年   1763篇
  2023年   5049篇
  2022年   14816篇
  2021年   19215篇
  2020年   16564篇
  2019年   19321篇
  2018年   22397篇
  2017年   21286篇
  2016年   23345篇
  2015年   20517篇
  2014年   25239篇
  2013年   33682篇
  2012年   30437篇
  2011年   33803篇
  2010年   32589篇
  2009年   34275篇
  2008年   33150篇
  2007年   31805篇
  2006年   29815篇
  2005年   24466篇
  2004年   19841篇
  2003年   16247篇
  2002年   15569篇
  2001年   14151篇
  2000年   14370篇
  1999年   11259篇
  1998年   8732篇
  1997年   7773篇
  1996年   7612篇
  1995年   7085篇
  1994年   6329篇
  1993年   4496篇
  1992年   4122篇
  1991年   3623篇
  1990年   3526篇
  1989年   3126篇
  1988年   2864篇
  1987年   3164篇
  1986年   2970篇
  1985年   3352篇
  1984年   3642篇
  1983年   3261篇
  1982年   2966篇
  1981年   2728篇
  1980年   2466篇
  1979年   2337篇
  1978年   2209篇
  1977年   1969篇
  1976年   1854篇
  1973年   1773篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
741.
Ocean dynamical processes exist over a wide range of temporal and spatial scales. Remotely stationed acoustic devices are being used to "sense" the interior of the oceans at previously unattainable scales. The method is similar to computer-aided tomography (CAT) scans of the brain, but the measurement difficulties are far more severe. The results of a demonstration experiment are reviewed and some directions for acoustic oceanography are discussed.  相似文献   
742.
Spectra of the central core and surrounding coma of Comet IRAS-Araki-Alcock (1983d) were obtained at 8–13 μm on 11 May and 2–4 μm on 12 May 1983. Spatially resolved measurements at 10 μm with a 4-arcsec beam showed that the central core was more than 100 times brighter than the inner coma only 8 arcsec away; for radially outflowing dust, the brightness ratio would be a factor of 8. The observations of the central core are consistent with direct detection of a nucleus having a radius of approximately 5 km. The temperature of the sunlit hemisphere was > 300 K. Spectra of the core are featureless, while spectra of the coma suggest weak silicate emission. The spectra show no evidence for icy grains. The dust producton rate on 11.4 May was ~ 105 g/sec, assuming that the gas flux from the dust-producing areas on the nucleus was ~ 10?5 g/cm2/sec.  相似文献   
743.
Contrary to previous work, we find that the decreasing intensity of fundamental molecular vibration bands with decreasing particle size is due primarily to increasing porosity of the finer particle size ranges, rather than to particle size per se. This implies that laser reflectance measurements from orbiting spacecraft should avoid loss of spectral contrast for fine particulate surfaces, because such measurements near zero phase angle will benefit from the opposition effect.  相似文献   
744.
In the coastal and estuarine waters of Goa, particulate organic carbon (POC) varied from 0.52 to 2.51 mg l?1 and from 0.28 to 5.24 mg l?1 and particulate phosphorus (PP) varied from 0.71 to 5.18 μg l?1 and from 0.78 to 20.34 μg l?1, respectively. The mean values of chlorophyll and primary productivity were 1.94 mg m?3 and 938.1 mg C m?2 day?1 in the coastal waters and 4.3 mg m?3 and 636.5 mg C m?1 day?1 in the estuarine waters, respectively.POCchl ratios were low in June and October even when POC values were quite high. The POC in surface waters was linearly correlated with the chlorophyll content. Also PP increased when chlorophyll and primary productivity remained high. The results suggest that the phytoplankton was sharply increasing and contributed to POC and PP content. The percentage of detritus calculated from the intercept values of chlorophyll on POC varied from 46 to 76% depending on season. Results indicate that the major portion of POC and PP during postmonsoon (October–January) is derived from phytoplankton production while the allochthonous matter predominate during monsoon (June–September).  相似文献   
745.
It has been found that the near-infrared flux variations of Seyfert galaxies satisfy relations of the form   Fi ≈α i j i j Fj   , where Fi , Fj are the fluxes in filters i and j ; and  α i , j , β i , j   are constants. These relations have been used to estimate the constant contributions of the non-variable underlying galaxies. The paper attempts a formal treatment of the estimation procedure, allowing for the possible presence of a third component, namely non-variable hot dust. In an analysis of a sample of 38 Seyfert galaxies, inclusion of the hot dust component improves the model fit in approximately half the cases. All derived dust temperatures are below 300 K, in the range 540–860 K or above 1300 K. A noteworthy feature is the estimation of confidence intervals for the component contributions: this is achieved by bootstrapping. It is also pointed out that the model implies that such data could be fruitfully analysed in terms of principal components.  相似文献   
746.
The chemical evolution history of a galaxy hides clues about how it formed and has been changing through time. We have studied the chemical evolution history of the Milky Way (MW) and Andromeda (M31) to find which are common features in the chemical evolution of disc galaxies as well as which are galaxy-dependent. We use a semi-analytic multizone chemical evolution model. Such models have succeeded in explaining the mean trends of the observed chemical properties in these two Local Group spiral galaxies with similar mass and morphology. Our results suggest that while the evolution of the MW and M31 shares general similarities, differences in the formation history are required to explain the observations in detail. In particular, we found that the observed higher metallicity in the M31 halo can be explained by either (i) a higher halo star formation efficiency (SFE), or (ii) a larger reservoir of infalling halo gas with a longer halo formation phase. These two different pictures would lead to (i) a higher [O/Fe] at low metallicities, or (ii) younger stellar populations in the M31 halo, respectively. Both pictures result in a more massive stellar halo in M31, which suggests a possible correlation between the halo metallicity and its stellar mass.  相似文献   
747.
Summary. Atmospheric pressure waves from the Mount St Helens eruption 1980 May 18 have been clearly recorded by a sensitive microbarograph at Berkeley, California. The record shows three types of waves with different group velocities. The pressure waves can be interpreted in terms of direct waves A1, antipodean travelling waves A2 and circumnavigating waves A3, all of which are composed of several acoustic-gravity modes propagated in the lower atmosphere. Synthetic barograms appropriate to the Berkeley station have been calculated on the basis of the dynamic response of the lower atmospheric structure, together with various assumptions of source properties. Comparisons between synthetic and observed barograms provide estimates for ranges of the time history of upward particle velocity at the source, source dimensions and the velocity of the source spreading over the blast zone, as well as for the average dissipation effects over the circumferential path. The results suggest that two major compression pulses on the A1 record correlate with the arrival of pressure waves from the first (lateral) blast and second (vertical) blast, although the inferred interblast time interval is not consistent with that estimated from seismic observations.  相似文献   
748.
G. Herman  M. Podolak 《Icarus》1985,61(2):252-266
A one-dimensional simulation of pure water-ice cometary nuclei is presented, and the effect of the nucleus as a heat reservoir is considered. The phase transition from amorphous to crystalline ice is studied for two cases: (1) where the released latent heat goes entirely into heating adjacent layers and (2) where the released latent heat goes entirely into sublimation. For a Halley-like orbit it was found that for case 1 the phase boundary penetrates about 15 m on the first orbit and does not advance until sublimation brings the surface to some 10 m from the phase boundary. For case 2 the phase boundary penetrates about 1 m below the surface and remains at this depth as the surface sublimates. For an orbit like that of Schwassmann-Wachmann 1 the phase boundary penetrates about 50 m initially for case 1 and about 1 m for case 2. There is no further transformation until the entire comet is heated slowly to near the transition temperature, after which the entire nucleus is converted to crystalline ice. For an Encke-type orbit case 1 gives a nearly continuous transition of the entire nucleus to crystalline ice, while for case 2 the initial penetration is about 8 m and remains at this depth relative to the surface as sublimation decreases the cometary radius. Thus the entire comet is converted to crystalline ice just before it is completely dissipated.  相似文献   
749.
The coma morphology and short-term evolution was investigated of three non-periodic comets in retrograde orbits, C/2001 Q4 (NEAT), C/2002 T7 (LINEAR), and C/2003 K4 (LINEAR). All three comets display distinct coma features, which were very different from one comet to the next and remained rather constant in shape during the observational period. A single, broad feature perpendicular to the sun-tail direction dominated the coma of C/2003 K4 in all used filters (B,V,R,I), whereas the coma of Comet C/2002 T7 exhibited different features in blue and red filters. C/2001 Q4 showed rather complex coma morphology with clear short-term variability in coma brightness. Therefore, these non-periodic comets neither show a featureless coma nor any similarities of the features detected. The overall distribution of coma material was investigated from the shape of radial coma profiles averaged around the comet nucleus. For C/2001 Q4 and C/2002 T7, the slopes fitted to the linear part of these profiles are flatter in the blue than in the red, which can be explained by the presence of coma gas. For C/2003 K4 no such difference is indicated in the May observations (r = 2.3 AU), while in July (r = 1.7 AU) the profiles in the B-filter are flatter than in V, R, and I, hence gas contamination was relevant at least in the B filter. The R and I filter images were used to determine approximate Afρ values of each comet as a function of time.  相似文献   
750.
A coupling procedure between a climate model of intermediate complexity (CLIMBER-2.3) and a 3-dimensional thermo-mechanical ice-sheet model (GREMLINS) has been elaborated. The resulting coupled model describes the evolution of atmosphere, ocean, biosphere, cryosphere and their mutual interactions. It is used to perform several simulations of the Last Deglaciation period to identify the physical mechanisms at the origin of the deglaciation process. Our baseline experiment, forced by insolation and atmospheric CO2, produces almost complete deglaciation of past northern hemisphere continental ice sheets, although ice remains over the Cordilleran region at the end of the simulation and also in Alaska and Eastern Siberia. Results clearly demonstrate that, in this study, the melting of the North American ice sheet is critically dependent on the deglaciation of Fennoscandia through processes involving switches of the thermohaline circulation from a glacial mode to a modern one and associated warming of the northern hemisphere. A set of sensitivity experiments has been carried out to test the relative importance of both forcing factors and internal processes in the deglaciation mechanism. It appears that the deglaciation is primarily driven by insolation. However, the atmospheric CO2 modulates the timing of the melting of the Fennoscandian ice sheet, and results relative to Laurentide illustrate the existence of threshold CO2 values, that can be translated in terms of critical temperature, below which the deglaciation is impeded. Finally, we show that the beginning of the deglaciation process of the Laurentide ice sheet may be influenced by the time at which the shift of the thermohaline circulation from one mode to the other occurs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号