首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   541020篇
  免费   62014篇
  国内免费   83884篇
测绘学   49476篇
大气科学   63745篇
地球物理   115611篇
地质学   249103篇
海洋学   70792篇
天文学   56367篇
综合类   25182篇
自然地理   56642篇
  2024年   2558篇
  2023年   7064篇
  2022年   16027篇
  2021年   20573篇
  2020年   17876篇
  2019年   20094篇
  2018年   23268篇
  2017年   22188篇
  2016年   24749篇
  2015年   21458篇
  2014年   26355篇
  2013年   34101篇
  2012年   31042篇
  2011年   34025篇
  2010年   33102篇
  2009年   34707篇
  2008年   33395篇
  2007年   32042篇
  2006年   29993篇
  2005年   24485篇
  2004年   19907篇
  2003年   16313篇
  2002年   15822篇
  2001年   14241篇
  2000年   14427篇
  1999年   11314篇
  1998年   8795篇
  1997年   7797篇
  1996年   7699篇
  1995年   7178篇
  1994年   6426篇
  1993年   4604篇
  1992年   4223篇
  1991年   3733篇
  1990年   3627篇
  1989年   3209篇
  1988年   2967篇
  1987年   3263篇
  1986年   3067篇
  1985年   3472篇
  1984年   3717篇
  1983年   3351篇
  1982年   3039篇
  1981年   2777篇
  1980年   2515篇
  1979年   2374篇
  1978年   2230篇
  1977年   1985篇
  1976年   1869篇
  1973年   1778篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
291.
292.
样品在分解过程中 ,亚铁易被空气部分氧化 ,致使测试结果偏低 ,采用在HF H2 SO4溶矿过程中加入邻菲卟罗啉 ,与亚铁形成络合物 ,对保护亚铁具有较好的效果。拟定了在塑料坩埚中加邻菲卟罗啉、H2 SO4及HF ,中高温电热板溶矿 ,容量法测定样品中的亚铁 ,方法精密度为 0 .2 3% ,样品加标准回收率 98.8%~ 10 1.9%。此方法具有较好的应用效果  相似文献   
293.
294.
295.
Based on the analysis of the development of GIS technology and application,this paper brought forward the concept of GoGIS,namely Cooperative GIS ,CoGIS is GIS facing group-users and supporting human-human interaction,which makes it differ from the former GISs,Then,the characteristics of general Computer Spport Cooperative Work (CSCW)applications and the complexity of Geographic Information Science were analyzed,and the conclusion the CoGIS was not a simple GIS layer on CSCW was reached,Further,this paper gaver the hierarchical architecture of CoGIS,and analyzed the coperative platform in detail from the following:1)basic elements;2) collaboration patterns;3) cooperation control mechanism;4) synchronization mechanism;5) security and 6) group communication and so on.With those,the problems about GIS applications are discussed,such as 1)distributed multi-source GIS information and knowledge sharing platform;2)the fusion and visualization of GIS information;3)virtual reality cooperative modeling;4) dymamic simulation;5)expert system and 6) decision-making.Finally,this paper analyzed CoGIS application mode in brief.  相似文献   
296.
297.
298.
299.
We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect each giant planet subnebula to be composed of an optically thick (given gaseous opacity) inner region inside of the planet’s centrifugal radius (where the specific angular momentum of the collapsing giant planet gaseous envelope achieves centrifugal balance, located at rCJ ∼ 15RJ for Jupiter and rCS ∼ 22RS for Saturn) and an optically thin, extended outer disk out to a fraction of the planet’s Roche-lobe (RH), which we choose to be ∼RH/5 (located at ∼150 RJ near the inner irregular satellites for Jupiter, and ∼200RS near Phoebe for Saturn). This places Titan and Ganymede in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted by the protoplanet. The outer disk may result from the nebula gas flowing into the protoplanet during the time of giant planet gap-opening (or cessation of gas accretion). For the sake of specificity, we use a solar composition “minimum mass” model to constrain the gas densities of the inner and outer disks of Jupiter and Saturn (and also Uranus). Our model has Ganymede at a subnebula temperature of ∼250 K and Titan at ∼100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 and 90 K, respectively.Our model has Callisto forming in a time scale ∼106 years, Iapetus in 106-107 years, Ganymede in 103-104 years, and Titan in 104-105 years. Callisto takes much longer to form than Ganymede because it draws materials from the extended, low density portion of the disk; its accretion time scale is set by the inward drift times of satellitesimals with sizes 300-500 km from distances ∼100RJ. This accretion history may be consistent with a partially differentiated Callisto with a ∼300-km clean ice outer shell overlying a mixed ice and rock-metal interior as suggested by Anderson et al. (2001), which may explain the Ganymede-Callisto dichotomy without resorting to fine-tuning poorly known model parameters. It is also possible that particulate matter coupled to the high specific angular momentum gas flowing through the gap after giant planet gap-opening, capture of heliocentric planetesimals by the extended gas disk, or ablation of planetesimals passing through the disk contributes to the solid content of the disk and lengthens the time scale for Callisto’s formation. Furthermore, this model has Hyperion forming just outside Saturn’s centrifugal radius, captured into resonance by proto-Titan in the presence of a strong gas density gradient as proposed by Lee and Peale (2000). While Titan may have taken significantly longer to form than Ganymede, it still formed fast enough that we would expect it to be fully differentiated. In this sense, it is more like Ganymede than like Callisto (Saturn’s analog of Callisto, we expect, is Iapetus). An alternative starved disk model whose satellite accretion time scale for all the regular satellites is set by the feeding of planetesimals or gas from the planet’s Roche-lobe after gap-opening is likely to imply a long accretion time scale for Titan with small quantities of NH3 present, leading to a partially differentiated (Callisto-like) Titan. The Cassini mission may resolve this issue conclusively. We briefly discuss the retention of elements more volatile than H2O as well as other issues that may help to test our model.  相似文献   
300.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号