首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69718篇
  免费   5924篇
  国内免费   7645篇
测绘学   2288篇
大气科学   9142篇
地球物理   16056篇
地质学   29047篇
海洋学   6762篇
天文学   10880篇
综合类   3278篇
自然地理   5834篇
  2023年   628篇
  2022年   1465篇
  2021年   1844篇
  2020年   1606篇
  2019年   1743篇
  2018年   2575篇
  2017年   2337篇
  2016年   2806篇
  2015年   2063篇
  2014年   2845篇
  2013年   3642篇
  2012年   2818篇
  2011年   3446篇
  2010年   3246篇
  2009年   3744篇
  2008年   3257篇
  2007年   3239篇
  2006年   2928篇
  2005年   2334篇
  2004年   2122篇
  2003年   2041篇
  2002年   1941篇
  2001年   1710篇
  2000年   1904篇
  1999年   2192篇
  1998年   1964篇
  1997年   1922篇
  1996年   1691篇
  1995年   1553篇
  1994年   1396篇
  1993年   1187篇
  1992年   1016篇
  1991年   896篇
  1990年   843篇
  1989年   748篇
  1988年   671篇
  1987年   687篇
  1986年   547篇
  1985年   598篇
  1984年   658篇
  1983年   572篇
  1982年   585篇
  1981年   516篇
  1980年   496篇
  1979年   436篇
  1978年   380篇
  1977年   391篇
  1976年   356篇
  1974年   341篇
  1973年   377篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
胶州湾是我囻黄海南部对虾的重要产卵场之一,每年4月中国对虾(Penaeus chinensis)亲体陆续进人胶州湾,进行产卵活动。繁殖的幼对虾生长迅速,至8月下旬虾群平均体长可达13cm左右,成为秋汛渔业的重要捕捞对象。近年由于捕捞力量加强等诸多因素,湾内对虾的年渔获量由70年代的2-5t,减至80年代的1-2t。虽然1984年以来有关部门实施对虾增殖放流,对虾资源量有所回升,但是因春季洄游的亲体(雌虾)数量锐减,7-8月间又使用各种网具违捕幼虾,因而极大地损害了幼虾资源。刘瑞玉等(1992)曾调查研究了胶州湾对虾生物资源。本文根据作者1991年以来5月和8月的对虾拖网调査资料,对胶州湾对虾资源的生态分布及其变动原因进行了分析研究,对加强管理和保护幼虾资源,以及提高对虾产量有极其重要的意义。  相似文献   
992.
中国海洋生物地球化学过程研究的最新进展   总被引:4,自引:0,他引:4  
海洋是全球生态系统的重要组成部分,在地球系统中,其与大气、陆地紧密联系在一起,在调节全球气候等方面发挥着举足轻重的作用。全球变化引起的海洋变化十分明显,现在已经能够观测到海洋的大尺度物理、化学和生物特征的变化,其中海洋食物链结构、海岸带富营养化和珊瑚礁退化最为  相似文献   
993.
现代水下技术在我国水运工程建设中的应用与前景   总被引:1,自引:0,他引:1  
自本世纪80年代中期以来,世界水下工程技术随着各国科学水平的提高而得以迅速发展。本文从水下工程技术的专业范畴及特征着手,分析了现代水下技术在水运工程建设中的应用;介绍了国外现代水下技术的基本进展及趋势;评价了国内水下工程技术及装备水平,同时展示了我院近十年来在现代水下技术与装备和开发、应用方面所做的工作与实力;最后分析了国内水运工程建设发展对水下技术的挑战,以及发展我国现代水下技术装备开发研究所面  相似文献   
994.
利用1981 ̄1990年环渤海地区的地面气象资料,探空资料和土地利用资料,计算了该地区大气水份平衡方程中各分量,分析了其变化特征,并对它们之间的相互关系进行了研究。  相似文献   
995.
R. M. Carter  L. Carter 《Marine Geology》1996,130(3-4):181-202
The Bounty Channel and Fan system provides the basis for a model for deep-sea channel and fan development in a rifted continental margin setting. The sedimentary system results from an interplay between tectonics (fan location; sediment source), turbidity currents (sediment supply), geostrophic currents (sediment reworking and distribution) and climate (sea level, and hence sediment supply and type). Today, sediment is shed from the collisional Southern Alps, part of the Pacific/Indo-Australian plate margin, and passes east across the adjacent shelf and into the Otago Fan complex at the head of the Bounty Trough. Paths of sediment supply, and locations of sediment deposition, are controlled by the bathymetry of the Bounty Trough, with axial slopes as high as 37 m/km (2°) towards the trough head, diminishing to around 3.5 m/km (0.2°) along the trough axis. The Bounty Fan is located 800 km further east, where the Bounty Channel debouches onto abyssal oceanic crust at the mouth of the Bounty Trough. The Bounty Fan comprises a basement controlled fan-channel complex with high leveed banks exhibiting fields of mud waves, and a northward-elongated middle fan. Channel-axis gradients diminish from 6 m/km (0.35°) or more on the upper fan to less than 1 m/km (<0.06°) on the lower fan. Parts of the left bank levee and almost the entire middle fan are being eroded and re-entrained within a Deep Western Boundary Current (DWBC), which passes along the eastern New Zealand margin at depths below 2000 m. The DWBC is the prime source of deep, cold water flow into the Pacific Ocean, with a volume of ca. 20 Sv and velocities up to 4 cm/s or greater. The mouth of the Bounty Channel, at a depth of 4950 m at the south end of the middle fan, acts as a point source for an abyssal sediment drift entrained northward under the DWBC at depths below 4300 m. The Bounty Fan probably originated in the early to middle Neogene, but has mostly been built during the last 3 Myr (Plio-Pleistocene), predominantly as climate-controlled sedimentary couplets of terrigenous, micaceous mud (acoustically reflective; glacial) and biopelagic ooze (acoustically transparent; interglacial), deposited under the pervasive influence of the DWBC.  相似文献   
996.
We consider long barotropic waves in a system of two rectangular basins connected by a channel in the case where waves are generated by the moving region of disturbances of atmospheric pressure passing above one of the basins. By using a numerical model, we compute the characteristics of the wave process for various values of the parameters of this system. The results of numerical calculations are compared with the corresponding characteristics obtained for the case of a closed basin. We also analyze the distinctive features of long-wave processes induced in the presence of the channel. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   
997.
The paper is concerned with the evaluation of the drift current parameters derived through the use of an analytical model. In this model, effective when stratification is stable and indifferent, the vertical turbulence coefficient profile is prescribed by the power function, and hydrodynamic quantities are prescribed using the external parameters of the problem (wind stress, the Coriolis parameter, and the dimensionless stratification parameter). Model data are compared with the observations of the upper mixed layer in the vicinity of the oceanic Station C, conducted during one year. It is shown that, under the spring-summer-time warming conditions, the model at issue is capable of adequately simulating the upper ocean layer dynamics. Translated by Vladimir A. Puchkin.  相似文献   
998.
Acoustic behavior of gas-bearing sediments is significantly different from that of gas-free sediments. In situ velocity profiles and acoustic signal characteristics in gas-bearing sediments of the upper several meters of the sea floor in Kiel Bay are presented in this study. Observed velocities in gas-bearing sediments are both higher and lower than those of the gas-free sediments. Small amounts of gas appear to cause signal reverberation without much attenuation. whereas large amounts of gas cause substantial attenuation.  相似文献   
999.
The GMRES approach is used to solve complex matrix solution arising from boundary element analysis of large offshore structures. This makes it possible to solve problems with large numbers of panels on a workstation with a much smaller memory than typical high performance computers. The speed of the solver is compatible with direct solvers when the enough RAM is available. Otherwise, an iteration procedure can be used. By using an out-of-core treatment, typical RAM requirement is reduced to a size approximately linearly proportional to the panel number n instead of being proportional to n2. The code is first verified with direct solver for cases with small number of panels. The applicability to large offshore structure of the model is demonstrated for a TLP case.  相似文献   
1000.
The interaction of waves and currents is studied by the dynamical coupling of a third generation wave model and a two-dimensional storm surge model. The coupling process of the two models is implemented synchronously. To estimate the effects of waves on the generation of storm surges, the theory of Janssen is used. The effects of the wave radiation stress on surge levels and the effects of storm-induced currents on waves are also investigated.The coupled wave and storm surge models have been tested by hindcasting two storm events in the northern South China Sea. The use of the Simth and Banke stress relation underestimates the surges by 10%. The inclusion of the radiation stress improves the accuracy of the computed results slightly by 2%. The introduction of a wave-dependent surface drag gives a significant improvement. The storm-induced currents clearly affect the wave characteristics at the peak stage. However, as far as the prediction of wave height is concerned, it is better not to consider the wave radiation stress in the storm surge model unless this is accompanied by a wave-dependent surface drag.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号