首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38117篇
  免费   1101篇
  国内免费   754篇
测绘学   969篇
大气科学   2953篇
地球物理   7763篇
地质学   14012篇
海洋学   3407篇
天文学   8203篇
综合类   248篇
自然地理   2417篇
  2022年   321篇
  2021年   507篇
  2020年   523篇
  2019年   536篇
  2018年   926篇
  2017年   880篇
  2016年   1062篇
  2015年   738篇
  2014年   1058篇
  2013年   1886篇
  2012年   1355篇
  2011年   1802篇
  2010年   1577篇
  2009年   2029篇
  2008年   1705篇
  2007年   1774篇
  2006年   1700篇
  2005年   1226篇
  2004年   1143篇
  2003年   1046篇
  2002年   1007篇
  2001年   847篇
  2000年   826篇
  1999年   673篇
  1998年   717篇
  1997年   695篇
  1996年   573篇
  1995年   562篇
  1994年   479篇
  1993年   421篇
  1992年   419篇
  1991年   386篇
  1990年   457篇
  1989年   375篇
  1988年   356篇
  1987年   439篇
  1986年   346篇
  1985年   430篇
  1984年   531篇
  1983年   451篇
  1982年   452篇
  1981年   403篇
  1980年   419篇
  1979年   360篇
  1978年   345篇
  1977年   340篇
  1976年   309篇
  1975年   296篇
  1974年   312篇
  1973年   340篇
排序方式: 共有10000条查询结果,搜索用时 774 毫秒
121.
Hoyt & Schatten (1998) claim that Simon Marius would have observed the sun from 1617 Jun 7 to 1618 Dec 31 (Gregorian calendar) all days, except three short gaps in 1618, but would never have detected a sunspot – based on a quotation from Marius in Wolf (1857), but mis‐interpreted by Hoyt & Schatten. Marius himself specified in early 1619 that for one and a half year... rather few or more often no spots could be detected... which was never observed before (Marius 1619). The generic statement by Marius can be interpreted such that the active day fraction was below 0.5 (but not zero) from fall 1617 to spring 1619 and that it was 1 before fall 1617 (since August 1611). Hoyt & Schatten cite Zinner (1952), who referred to Zinner (1942), where observing dates by Marius since 1611 are given but which were not used by Hoyt & Schatten. We present all relevant texts from Marius where he clearly stated that he observed many spots in different form on and since 1611 Aug 3 (Julian) = Aug 13 (Greg.) (on the first day together with Ahasverus Schmidnerus); 14 spots on 1612 May 30 (Julian) = Jun 9 (Greg.), which is consistent with drawings by Galilei and Jungius for that day, the latter is shown here for the first time; at least one spot on 1611 Oct 3 and/or 11 (Julian), i.e. Oct 13 and/or 21 (Greg.), when he changed his sunspot observing technique; he also mentioned that he has drawn sunspots for 1611 Nov 17 (Julian) = Nov 27 (Greg.); in addition to those clearly datable detections, there is evidence in the texts for regular observations. For all the information that can be compared to other observers, the data from Marius could be confirmed, so that his texts are highly credible. We also correct several shortcomings or apparent errors in the database by Hoyt & Schatten (1998) regarding 1612 (Harriot), 1615 (Saxonius, Tard´e), 1616 (Tard´e), 1617–1619 (Marius, Riccioli/Argoli), and Malapert (for 1618, 1620, and 1621). Furthermore, Schmidnerus, Cysat, David & Johann Fabricius, Tanner, Perovius, Argoli, and Wely are not mentioned as observers for 1611, 1612, 1618, 1620, and 1621 in Hoyt & Schatten. Marius and Schmidnerus are among the earliest datable telescopic sunspot observers (1611 Aug 3, Julian), namely after Harriot, the two Fabricius (father and son), Scheiner, and Cysat. Sunspots records by Malapert from 1618 to 1621 show that the last low‐latitude spot was seen in Dec 1620, while the first high‐latitude spots were noticed in June and Oct 1620, so that the Schwabe cycle turnover (minimum) took place around that time, which is also consistent with the sunspot trend mentioned by Marius and with naked‐eye spots and likely true aurorae. We consider discrepancies in the Hoyt & Schatten (1998) systematics, we compile the active day fractions for the 1610s, and we critically discuss very recent publications on Marius which include the following Maunder Minimum. Our work should be seen as a call to go back to the historical sources. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
122.
克拉美丽气田石炭系火山岩复杂岩性岩电特征   总被引:2,自引:0,他引:2  
准噶尔盆地东部克拉美丽气田石炭系火山岩岩石类型复杂多样,且同一岩性由于结构、构造和成分的差异,电性特征差异亦较大,岩性识别困难。本文通过对该区14口井取心段岩电关系研究,认为自然伽马、电阻率、密度三种曲线岩性特征响应明显; 电阻率、中子、密度、声波四条曲线对火山岩岩石构造特征响应明显。并编制了岩性和岩石构造测井识别交会图版11张。进而利用电测资料识别出该区11种火山岩岩石类型: 正长斑岩、二长斑岩、玄武岩、粗面岩、英安岩、流纹岩、霏细岩、沉凝灰岩、熔结凝灰岩、火山角砾岩和熔结火山角砾岩; 识别出5种岩石构造类型: 正长斑岩中气孔及块状构造和玄武岩中杏仁、碎裂及块状构造。通过本区12口钻井取心后验,测井识别结果与钻井岩心分析结果吻合良好,可作为地区性火山岩测井岩性、岩石构造识别模式。  相似文献   
123.
Mantle-derived xenoliths and xenocrysts in Pale-ozoic diamondiferous ki mberlites in Mengyin (Shan-dong Province) and Fuxian (Liaoning Province) showthe presence of a cold,thick lithospheric mantle be-neath the North China craton ( NCC) in the MiddleOrdovician ( Griffin et al ., 1998 ; Menzies et al .,1993 ;Fan and Menzies ,1992) . However ,studies onmantle peridotites captured in the Tertiary to Neo-gene basalts of the NCC have revealed the existenceof a thin, hot and fertile lithosph…  相似文献   
124.
Interglacial lake deposits at Tye Green, Stansted, resting on unweathered till and overlain by a weathered diamicton are correlated with the temperate Hoxnian Stage. The sediments represent the infilling of an isolated kettle-hole type of lake basin formed at the end of the cold Anglian Stage. Through the temperate period this basin was infilled by inorganic and organic sediments that record the development and decline of deciduous forest. Later periglacial conditions are indicated by the final infilling of the basin by reworked till. The sedimentary sequence and vegetational development recorded in the sediments at Tye Green are compared with other Hoxnian sites in eastern England. Changes in deposition rates are interpreted as representing water-table fluctuations resulting from changes in precipitation. The deposits at Tye Green provide a useful stratigraphical marker in the glacial sequence of the district. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
125.
地气法-找深部金矿的新方法   总被引:4,自引:0,他引:4  
介绍一种八十年代发展起来的找深部金矿的新方法一地气法。文中讨论了地气法的找矿机理,认为是地壳中上升气流将成矿元素微粒携带至地表而造成多元素异常。对工作方法着重讨论了地气采样与测试的系统,以及比较了积累式取样的效果。最后列出山东招远地区大尹格庄金矿80号勘探线的地气测量多元素异常图。  相似文献   
126.
At least one large, late Pleistocene flood traveled into the Owyhee River as a result of a rise and subsequent outburst from pluvial Lake Alvord in southeastern Oregon. Lake Alvord breached Big Sand Gap in its eastern rim after reaching an elevation of 1292 m, releasing 11.3 km3 of water into the adjacent Coyote Basin as it eroded the Big Sand Gap outlet channel to an elevation of about 1280 m. The outflow filled and then spilled out of Coyote Basin through two outlets at 1278 m and into Crooked Creek drainage, ultimately flowing into the Owyhee and Snake Rivers. Along Crooked Creek, the resulting flood eroded canyons, stripped bedrock surfaces, and deposited numerous boulder bars containing imbricated clasts up to 4.1 m in diameter, some of which are located over 30 m above the present-day channel.Critical depth calculations at Big Sand Gap show that maximum outflow from a 1292- to 1280-m drop in Lake Alvord was  10,000 m3 s− 1. Flooding became confined to a single channel approximately 40 km downstream of Big Sand Gap, where step-backwater calculations show that a much larger peak discharge of 40,000 m3 s− 1 is required to match the highest geologic evidence of the flood in this channel. This inconsistency can be explained by (1) a single 10,000 m3 s− 1 flood that caused at least 13 m of vertical incision in the channel (hence enlarging the channel cross-section); (2) multiple floods of 10,000 m3 s− 1 or less, each producing some incision of the channel; or (3) an earlier flood of 40,000 m3 s− 1 creating the highest flood deposits and crossed drainage divides observed along Crooked Creek drainage, followed by a later 10,000 m3 s− 1 flood associated with the most recent shorelines in Alvord and Coyote Basins.Well-developed shorelines of Lake Alvord at 1280 m and in Coyote Basin at 1278 m suggest that after the initial flood, postflood overflow persisted for an extended period, connecting Alvord and Coyote Basins with the Owyhee River of the Columbia River drainage. Surficial weathering characteristics and planktonic freshwater diatoms in Lake Alvord sediment stratigraphically below Mt. St. Helens set Sg tephra, suggest deep open-basin conditions at  13–14 ka (14C yr) and that the flood and prominent shorelines date to about this time. But geomorphic and sedimentological evidence also show that Alvord and Coyote Basins held older, higher-elevation lakes that may have released earlier floods down Crooked Creek.  相似文献   
127.
Abstract– Pyroxenes are among the most common minerals in the solar system and are ideally suited for remote geochemical analysis because of the sensitivity of their distinctive spectra to mineral composition. Fe2+ is responsible for the dominant pyroxene absorptions in the visible and near‐infrared, but substitutions of other cations such as Ca2+ change the crystal structure and site geometries and thus the crystal field splitting energies of the Fe cations. To define spectral systematics resulting from major pyroxene cations (Ca2+, Mg2+, and Fe2+), we focus on a suite of pyroxenes synthesized with only Ca2+, Mg2+, and Fe2+ in the two octahedral sites, specifically examining the effect of Ca2+ on pyroxene absorption bands. The modified Gaussian model is used to deconvolve pyroxene spectra into component bands that can then be linked directly to crystal field absorptions. In orthopyroxenes and low‐Ca clinopyroxenes, Ca2+‐content has a strong and predictable effect on the positions of the absorption bands. At a threshold of Wo30, the crystal field environment stagnates and the M2 bands cease to change significantly as more Ca2+ is added. At Wo50, when most of the M2 sites are filled by Ca2+, band positions do not change drastically, although the presence and strengths of the 1 and 2 μm bands are affected by even trace amounts of Fe2+ in the M2 site. It is thus apparent that next‐nearest neighbors and the distortions they impose on the pyroxene lattice affect the electronic states around the Fe2+ cations and control absorption band properties.  相似文献   
128.
Application of boundary value techniques in the case of an electron performing relativistic motions within a magnetic dipole such as that of the Earth supplemented by a scanning process by means of which the entire phase space of the problem can be investigated, six new types of periodic motion have been discovered and computed. The stability of these motions is investigated and their direct bearing on formation and shape of the Van Allen zones of the Earth is discussed.  相似文献   
129.
Geochemical data from basalts, basaltic andesites, and andesites of the Mesozoic–Cenozoic (143–44 Ma) from Livingston, Greenwich, Robert, King George, and Ardley Islands of the South Shetland archipelago, Antarctica, are presented. The rocks have variable SiO2 of approximately 46–61 wt%, Al2O3 of 15–26 wt%, and total alkali (K2O+Na2O) of 2–6 wt%. Most samples have low Mg#, Cr, and Ni, which indicates that they have undergone significant fractional crystallization from mantle-derived melts. The presence of olivine cumulatic in the samples from Livingston and Robert Islands explains some high MgO, Ni, and Cr values, whereas low Rb, Zr, and Nb values could be related to undifferentiated magmas. N-MORB-normalized trace element patterns show that South Shetland Islands volcanic rocks have a geochemical pattern similar to that found for other island arcs, with enrichment in LILE relative to HFSE and in LREE relative to HREE. The geochemistry pattern and presence of calcic plagioclase, orthopyroxene, Mg-olivine, and titanomagnetite phenocrysts suggest a source related to the subduction process. The geochemical data also suggest magma evolution from the tholeiitic to the calc-alkaline series; some samples show a transitional pattern. Samples from the South Shetland archipelago show moderate LREE/HREE ratios relative to N-MORB and OIB, depletion in Nb relative to Yb, and high Th/Yb ratios. These patterns probably reflect magma derived from a lithospheric mantle source previously modified by fluids and sediments from a subduction zone.

Resumo

Dados geoquímicos de basaltos, andesitos basálticos e andesitos mesozóicos–cenozóicos (143–44 Ma) das ilhas Livingston, Greenwich, Robert, King George e Ardley do Arquipélago Shetland do Sul, Antártica são discutidas neste artigo. As rochas tem conteúdos de SiO2 variando de 46 a 61%, Al2O3 de 15 a 26% e álcalis (K2O+Na2O) de 2 a 6%. A maior parte das amostras tem conteúdos baixos de Mg#, Cr e Ni, indicando que sofreram significante cristalização fracionada de fusões derivadas do manto. A presença de fases cumuláticas nas amostras das ilhas Livingston e Robert explicaria os elevados valores de MgO, Ni, Cr, enquanto que baixos valores de Rb, Zr e Nb observados nas amostras destas ilhas poderiam estar relacionados a magmas não diferenciados. Os padrões de elementos-traço normalizados pelo N-MORB mostram que as rochas vulcânicas das Ilhas Shetland do Sul têm padrão geoquímico similar àqueles encontrados em outros arcos de ilhas com enriquecimento em LILE em relação aos HFSE e em ETRL em relação aos ETRP. O padrão geoquímico e a ocorrência de fenocristais de plagioclásio cálcico, ortopiroxênio, olivina magnesiana e titanomagnetita sugerem origem relacionada a processos de subducção. Dados geoquímicos obtidos para as amostras do arquipélago Shetland do Sul sugerem um magma evoluindo de toleítico para cálcico-alcalino, observando-se em algumas amostras um padrão transicional. As amostras do arquipélago Shetland do Sul mostram em relação ao N-MORB e OIB, moderadas razões ETRL/ETRP, empobrecimento em Nb relativo a Yb e elevada razão Th/Yb Estes padrões refletem, provavelmente, magma derivado de uma fonte mantélica litosférica, que foi modificada por fluídos e sedimentos da zona de subducção.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号