首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82768篇
  免费   1207篇
  国内免费   1296篇
测绘学   2184篇
大气科学   5457篇
地球物理   15776篇
地质学   33012篇
海洋学   6999篇
天文学   17595篇
综合类   461篇
自然地理   3787篇
  2022年   708篇
  2021年   1071篇
  2020年   1100篇
  2019年   1180篇
  2018年   4317篇
  2017年   3913篇
  2016年   3483篇
  2015年   1348篇
  2014年   2262篇
  2013年   3565篇
  2012年   3317篇
  2011年   5108篇
  2010年   4488篇
  2009年   5207篇
  2008年   4392篇
  2007年   4998篇
  2006年   3166篇
  2005年   2197篇
  2004年   2053篇
  2003年   2009篇
  2002年   1835篇
  2001年   1531篇
  2000年   1393篇
  1999年   1028篇
  1998年   1084篇
  1997年   1095篇
  1996年   869篇
  1995年   863篇
  1994年   775篇
  1993年   674篇
  1992年   660篇
  1991年   630篇
  1990年   730篇
  1989年   622篇
  1988年   581篇
  1987年   666篇
  1986年   519篇
  1985年   686篇
  1984年   789篇
  1983年   706篇
  1982年   689篇
  1981年   631篇
  1980年   648篇
  1979年   527篇
  1978年   567篇
  1977年   517篇
  1976年   468篇
  1975年   457篇
  1974年   457篇
  1973年   526篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
We present and analyse the sunspot observations performed by Franz I.C. Hallaschka in 1814 and 1816. These solar observations were carried out during the so-called Dalton minimum, around the maximum phase of Solar Cycle 6. These records are very valuable because they allow us to complete observational gaps in the collection of sunspot group numbers, improving the coverage for this epoch. We have analysed and compared the observations made by Hallaschka with the records made by other contemporary observers. Unfortunately, the analysis of the sunspot areas and positions showed that they are too inaccurate for scientific use. We conclude, however, that the sunspot counts made by Hallaschka are similar to those made by other astronomers of that time. The observations by Hallaschka confirm a low level of solar activity during the Dalton minimum.  相似文献   
993.
Solar wind propagation from the point of measurement to an arbitrary target in the heliosphere is an important input for heliospheric, planetary and cometary studies. In this paper a new kinematic propagation method, the magnetic lasso method is presented. Compared to the simple ballistic approach our method is based on reconstructing the ideal Parker spiral connecting the target with the Sun by testing a previously defined range of heliographic longitudes. The model takes into account the eventual evolution of stream–stream interactions and handles these with a simple model based on the dynamic pressure difference between the two streams. Special emphasis is given to input data cleaning by handling interplanetary coronal mass ejection events as data gaps due to their different propagation characteristics. The solar wind bulk velocity is considered radial and constant. Density and radial magnetic field are propagated by correcting with the inverse square of the radial distance. The model has the advantage that it can be coded easily and fitted to the problem; it is flexible in selecting and handling input data and requires little running time.  相似文献   
994.
We investigate the behaviour of a charged isotropic model with conformal symmetry. The relationship between the gravitational potentials arising from the conformal condition is used to generate a new class of exact solutions to the Einstein-Maxwell equations. A specific form of the electric field intensity and the metric potential is required to avoid a singularity at the centre. We can find simple elementary functions for the matter variables and the potentials with realistic profiles. The causality conditions, stability conditions and energy conditions are satisfied. Masses, radii, central densities and surface redshifts are generated, and the values are consistent with the compact stars 4U 1538-52 and PSR J1614-2230.  相似文献   
995.
A growing body of evidence suggests the operation of life and life processes in comets as well in larger icy bodies in the solar system including Enceladus. Attempts to interpret such data without invoking active biology are beginning to look weak and flawed. The emerging new paradigm is that life is a cosmic phenomenon as proposed by Hoyle and Wickramasinghe (Lifecloud: the Origin of Life in the Galaxy, 1978) and first supported by astronomical spectroscopy (Wickramasinghe and Allen, Nature 287:518, 1980; Allen and Wickramasinghe, Nature 294:239, 1981; Wickramasinghe and Allen, Nature 323:44, 1986). Comets are the transporters and amplifiers of microbial life throughout the Universe and are also, according to this point of view, the carriers of viruses that contribute to the continued evolution of life. Comets brought life to Earth 4.2 billion years ago and they continue to do so. Space extrapolations of comets, Enceladus and possibly Pluto supports this point of view. Impacts of asteroids and comets on the Earth as well as on other planetary bodies leads to the ejection of life-bearing dust and rocks and a mixing of microbiota on a planetary scale and on an even wider galactic scale. It appears inevitable that the entire galaxy will be a single connected biosphere.  相似文献   
996.
In Russia, work aimed at designing a spacecraft for the long-term exploration of Venus is currently underway as part of the VENUS-D project. The R&D work proposes the concept of a snake-type atmospheric probe intended for exploring the atmosphere of Venus. This article describes the principles of flight, considers the main design features and engineering characteristics of the probes, and provides recommendations for engineering solutions.  相似文献   
997.
A great number of probable encounters of asteroid 2015 RN35 with the Earth have been found; many of them were unknown earlier. The main characteristics and properties of the corresponding trajectories have been obtained. Probable impacts of the asteroid Apophis with the Earth are also discussed. The results suggest that the multitudes of potential impacts of hazardous asteroids with the Earth can be and must be analyzed in more detail. Such an analysis is required to plan and implement the measures on preventing the asteroid impact hazard.  相似文献   
998.
The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth–Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth–Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.  相似文献   
999.
In this paper, we have constructed the cosmological model of the universe in f(RT) theory of gravity in a Bianchi type \(\mathrm{VI}_h\) universe for the functional f(RT) in the form \(f(R,T)=\mu R+\mu T\), where R and T are respectively Ricci scalar and trace of energy momentum tensor and \(\mu \) is a constant. We have made use of the hyperbolic scale factor to find the physical parameters and metric potentials defined in the space-time. The physical parameters are constrained from different representative values to build up a realistic cosmological model aligned with the observational behaviour. The state finder diagnostic pair is found to be in the acceptable range. The energy conditions of the model are also studied.  相似文献   
1000.
Contemporary piece of writing devotes to the investigation of plane symmetric cosmological model with quark and strange quark matter in the deformations of the Einstein’s theory of General Relativity (GR). At small or large scales (ultraviolet or infrared gravity), deformations of the Einstein’s theory could provide a better handling of cosmic acceleration without magnetism (along with singularities). In particular, a proper deformation of GR in the ultraviolet regime could play the role of describing the transition between GR and quantum gravity. As a matter of fact, although with a different purpose in mind, it was Einstein himself who proposed in the 30’s the reformulation of GR by taking the field of orthonormal frames or tetrads as the dynamical variable instead of the metric tensor (Einstein, Phys. Math. Kl 217, 401, 1928). As per the observation, pressure and energy density of the model approaches the bag constant in negative and positive ways at \(t\rightarrow \infty \), i.e. \(p\rightarrow -B_c \) and \(\rho \rightarrow B_c \), the negative pressure due to the Dark Energy (DE) in the context of accelerated expansion of the universe. So the strange quark matter gives an idea of existence of dark energy in the universe and supports the observations of the SNe-I (Riess et al., Astron. J. 116,1009, 1998; Perlmutter et al., Astrophys. J. 517, 565, 1999). Also these results agree with the study of Aktas and Aygun (Chinese J. Phys. 55, 71, 2017) and Sahoo et al. (New. Astron. 60, 80, 2018).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号