首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37462篇
  免费   1354篇
  国内免费   901篇
测绘学   966篇
大气科学   2914篇
地球物理   7686篇
地质学   13937篇
海洋学   3362篇
天文学   8189篇
综合类   247篇
自然地理   2416篇
  2022年   307篇
  2021年   498篇
  2020年   494篇
  2019年   504篇
  2018年   926篇
  2017年   878篇
  2016年   1051篇
  2015年   734篇
  2014年   1054篇
  2013年   1877篇
  2012年   1350篇
  2011年   1791篇
  2010年   1566篇
  2009年   2020篇
  2008年   1701篇
  2007年   1768篇
  2006年   1700篇
  2005年   1221篇
  2004年   1139篇
  2003年   1037篇
  2002年   1005篇
  2001年   845篇
  2000年   825篇
  1999年   672篇
  1998年   716篇
  1997年   691篇
  1996年   573篇
  1995年   562篇
  1994年   479篇
  1993年   421篇
  1992年   419篇
  1991年   386篇
  1990年   457篇
  1989年   373篇
  1988年   356篇
  1987年   439篇
  1986年   346篇
  1985年   430篇
  1984年   531篇
  1983年   451篇
  1982年   453篇
  1981年   403篇
  1980年   419篇
  1979年   360篇
  1978年   345篇
  1977年   340篇
  1976年   309篇
  1975年   296篇
  1974年   312篇
  1973年   342篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
The molecular-level processes that control green rust sodium sulphate (GRNa,SO4) reaction with chromate were studied using high-resolution techniques. Changes in solid morphology, structure and composition were observed with atomic force microscopy, transmission electron microscopy and X-ray diffraction. The results suggest the following mechanisms: Chromate replaces sulphate in the GR interlayer and is reduced by Fe(II). Formation of sparingly soluble Cr(III)-solid blocks further chromate entry, but Cr(VI) reduction continues at the GR solid/solution interface. Electron transfer from the centre of the GR crystals to the surface facilitates rapid reaction. Less stable zones of the reacted GRNa,SO4 dissolve and amorphous Cr(III),Fe(III)-solid forms. During equilibration, Cr-substituted goethite evolves in association with remaining GRNa,SO4, fed by material from the amorphous phase and dissolving oxidised GR. In contrast, previous Cr(VI) experiments with the carbonate form of GR, GRCO3, have suggested only reaction and deposition at the surface. From the perspective of environmental protection, these results have important implications. Goethite is sparingly soluble and the inclusion of Cr(III) as a solid-solution makes it even less soluble. Compared to Cr adsorbed at the surface of an Fe(III)-phase, Cr(III) incorporated in goethite is much less likely to be released back to groundwater.  相似文献   
82.
The Central Godavari delta is located along the Bay of Bengal Coast, Andhra Pradesh, India, and is drained by Pikaleru, Kunavaram and Vasalatippa drains. There is no groundwater pumping for agriculture as wells as for domestic purpose due to the brackish nature of the groundwater at shallow depths. The groundwater table depths vary from 0.8 to 3.4 m and in the Ravva Onshore wells, 4.5 to 13.3 m. Electrical Resistivity Tomography (ERT) surveys were carried out at several locations in the delta to delineate the aquifer geometry and to identify saline water aquifer zones. Groundwater samples collected and analyzed for major ions for assessing the saline water intrusion and to identify the salinity origin in the delta region. The results derived from ERT indicated low resistivity values in the area, which can be attributed to the existence of thick marine clays from ground surface to 12–15 m below ground level near the coast and high resistivity values are due to the presence of coarse sand with freshwater away from the coast. The resistivity values similar to saline water <0.01 Ω m is attributed to the mixing of the saline water along surface water drains. In the Ravva Onshore Terminal low resistivity values indicated up coning of saline water and mixing of saline water from Pikaleru drain. The SO 4 ?2 /Cl?and Na+2/Cl?ratios did not indicate saline water intrusion and the salinity is due to marine palaeosalinity, dilution of marine clays and dissolution of evaporites.  相似文献   
83.
 Stokes' formula from 1849 is still the basis for the gravimetric determination of the geoid. The modification of the formula, originating with Molodensky, aims at reducing the truncation error outside a spherical cap of integration. This goal is still prevalent among various modifications. In contrast to these approaches, some least-squares types of modification that aim at reducing the truncation error, as well as the error stemming from the potential coefficients, are demonstrated. The least-squares estimators are provided in the two cases that (1) Stokes' kernel is a priori modified (e.g. according to Molodensky's approach) and (2) Stokes' kernel is optimally modified to minimize the global mean square error. Meissl-type modifications are also studied. In addition, the use of a higher than second-degree reference field versus the original (Pizzetti-type) reference field is discussed, and it is concluded that the former choice of reference field implies increased computer labour to achieve the same result as with the original reference field. Received: 14 December 1998 / Accepted: 4 October 1999  相似文献   
84.
U–Pb zircon/baddeleyite ages obtained for the Korosten anorthosite-rapakivi granite complex, Ukrainian shield, suggest that different magmatic phases were emplaced during a period of ca. 30 million years as a series of distinct igneous episodes. The earliest 1789.1±2.0 Ma anorthosites were followed by 1781.3±3.2 Ma dykes of plagiogranite porphyries. The emplacement of a major rapakivi granite phase took place at 1767.4±2.2 Ma, and was followed by emplacement of layered intrusions of anorthosites, gabbronorites, diabases and ultrabasic rocks between 1761 and 1758 Ma. The minimum duration of magmatism of about 30 million years, the 6–15 million years interval between igneous pulses, and alternation of discrete episodes of basic and felsie magmatism are common features of major anorthositemangerite-charnockite-rapakivi granite complexes. Temporal distribution of igneous activity in the Korosten complex shows that the gabbro-anorthosites and the granites are not comagmatic, although they are possibly cogenetic, and that at least four portions of granitic and basic magmas were generated during a relatively long period of at least 30 million years. The time gap of about 20–25 million years between early basic and later and more voluminous granitic magmatism, characteristic of the Korosten pluton, Wiborg and Salmi batholiths, probably reflects the duration of extensional processes before the generation of large volumes of magma in the lower crust.  相似文献   
85.
86.
87.
88.
89.
We evaluated tools and methods for in situ freezing of cores in unconsolidated subsurface media. Our approach, referred to as cryogenic core collection (C3), has key aspects that include downhole circulation of liquid nitrogen (LN) via a cooling system, strategic use of thermal insulation to focus cooling into the core, and controlling LN back pressure to optimize cooling. Two cooling systems (copper coil and dual‐wall cylinder) are described. For both systems, the time to freeze a single 2.5‐foot (76‐cm) long by 2.5‐inch (63‐mm) diameter core is 5 to 7 min. Frozen core collection rates of about 30 feet/day (10 m/day) were achieved at two field sites, one impacted by petroleum‐based light nonaqueous phase liquids (LNAPLs) and the other by chlorinated solvents. Merits of C3 include (1) improved core recovery, (2) potential control of flowing sand, and (3) improved preservation of critical sediment attributes. Development of the C3 method creates novel opportunities to characterize sediment with respect to physical, chemical, and biological properties. For example, we were able to resolve water, LNAPL, and gas saturations above and below the water table. By eliminating drainage of water, gas and LNAPL saturations in the range of 6 to 23% and 1 to 3% of pore space, respectively, were measured in LNAPL‐impacted intervals below the water table.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号