首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113061篇
  免费   2614篇
  国内免费   1756篇
测绘学   3020篇
大气科学   9198篇
地球物理   23683篇
地质学   39407篇
海洋学   9691篇
天文学   24290篇
综合类   411篇
自然地理   7731篇
  2021年   848篇
  2020年   977篇
  2019年   1064篇
  2018年   2021篇
  2017年   1975篇
  2016年   2629篇
  2015年   1814篇
  2014年   2673篇
  2013年   5606篇
  2012年   3081篇
  2011年   4278篇
  2010年   3728篇
  2009年   5070篇
  2008年   4522篇
  2007年   4218篇
  2006年   4281篇
  2005年   3492篇
  2004年   3490篇
  2003年   3280篇
  2002年   3155篇
  2001年   2774篇
  2000年   2743篇
  1999年   2323篇
  1998年   2348篇
  1997年   2264篇
  1996年   2001篇
  1995年   1901篇
  1994年   1704篇
  1993年   1595篇
  1992年   1521篇
  1991年   1363篇
  1990年   1591篇
  1989年   1388篇
  1988年   1293篇
  1987年   1547篇
  1986年   1358篇
  1985年   1622篇
  1984年   1945篇
  1983年   1815篇
  1982年   1689篇
  1981年   1607篇
  1980年   1451篇
  1979年   1382篇
  1978年   1436篇
  1977年   1338篇
  1976年   1234篇
  1975年   1172篇
  1974年   1232篇
  1973年   1221篇
  1972年   754篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
911.
A systematic investigation on silica contents and silicon isotope compositions of bamboos was undertaken. Seven bamboo plants and related soils were collected from seven locations in China. The roots, stem, branch and leaves for each plant were sampled and their silica contents and silicon isotope compositions were determined. The silica contents and silicon isotope compositions of bulk and water-soluble fraction of soils were also measured. The silica contents of studied bamboo organs vary from 0.30% to 9.95%. Within bamboo plant the silica contents show an increasing trend from stem, through branch, to leaves. In bamboo roots the silica is exclusively in the endodermis cells, but in stem, branch and leaves, the silica is accumulated mainly in epidermal cells. The silicon isotope compositions of bamboos exhibit significant variation, from −2.3‰ to 1.8‰, and large and systematic silicon isotope fractionation was observed within each bamboo. The δ30Si values decrease from roots to stem, but then increase from stem, through branch, to leaves. The ranges of δ30Si values within each bamboo vary from 1.0‰ to 3.3‰. Considering the total range of silicon isotope composition in terrestrial samples is only 7‰, the observed silicon isotope variation in single bamboo is significant and remarkable. This kind of silicon isotope variation might be caused by isotope fractionation in a Rayleigh process when SiO2 precipitated in stem, branches and leaves gradually from plant fluid. In this process the Si isotope fractionation factor between dissolved Si and precipitated Si in bamboo (αpre-sol) is estimated to be 0.9981. However, other factors should be considered to explain the decrease of δ30Si value from roots to stem, including larger ratio of dissolved H4SiO4 to precipitated SiO2 in roots than in stem. There is a positive correlation between the δ30Si values of water-soluble fractions in soils and those of bulk bamboos, indicating that the dissolved silicon in pore water and phytoliths in soil is the direct sources of silicon taken up by bamboo roots. A biochemical silicon isotope fractionation exists in process of silicon uptake by bamboo roots. Its silicon isotope fractionation factor (αbam-wa) is estimated to be 0.9988. Considering the distribution patterns of SiO2 contents and δ30Si values among different bamboo organs, evapotranspiration may be the driving force for an upward flow of a silicon-bearing fluid and silica precipitation. Passive silicon uptake and transportation may be important for bamboo, although the role of active uptake of silicic acid by roots may not be neglected. The samples with relatively high δ30Si values all grew in soils showing high content of organic materials. In contrast, the samples with relatively low δ30Si values all grew in soil showing low content of organic materials. The silicon isotope composition of bamboo may reflect the local soil type and growth conditions. Our study suggests that bamboos may play an important role in global silicon cycle.  相似文献   
912.
Samarium-neodymium isotopic analyses of unleached and acid-leached mineral fractions from the recently identified olivine-bearing shergottite Northwest Africa 1195 yield a crystallization age of 347 ± 13 Ma and an value of +40.1 ± 0.9. Maskelynite fractions do not lie on the Sm-Nd isochron and appear to contain a martian surface component with low 147Sm/144Nd and 143Nd/144Nd ratios that was added during shock. The Rb-Sr system is disturbed and does not yield an isochron. Terrestrial Sr appears to have affected all of the mineral fractions, although a maximum initial 87Sr/86Sr ratio of 0.7016 is estimated by passing a 347 Ma reference line through the maskelynite fraction that is least affected by contamination. The high initial value and the low initial 87Sr/86Sr ratio, combined with the geologically young crystallization age, indicate that Northwest Africa 1195 is derived from a source region characterized by a long-term incompatible-element depletion.The age and initial Sr and Nd isotopic compositions of Northwest Africa 1195 are very similar to those of Queen Alexandra Range 94201, indicating these samples were derived from source regions with similar Sr-Nd isotopic systematics. These similarities suggest that these two meteorites share a close petrogenetic relationship and might have been erupted from a common volcano. The meteorites Yamato 980459, Dar al Gani 476, Sayh al Uhaymir 005/008, and Dhofar 019 also have relatively old ages between 474 and 575 Ma and trace element and/or isotopic systematics that are indicative of derivation from incompatible-element-depleted sources. This suggests that the oldest group of meteorites is more closely related to one another than they are to the younger meteorites that are derived from less incompatible-element-depleted sources. Closed-system fractional crystallization of this suite of meteorites is modeled with the MELTS algorithm using the bulk composition of Yamato 980459 as a parent. These models reproduce many of the major element and mineralogical variations observed in the suite. In addition, the rare earth element systematics of these meteorites are reproduced by fractional crystallization using the proportions of phases and extents of crystallization that are calculated by MELTS. Other shergottites that demonstrate enrichments in incompatible-elements and have evolved Sr and Nd isotopic systematics have some geochemical systematics that are similar to those observed in the depleted group. Most notably, although they exhibit a very limited range of incompatible trace element and isotopic compositions, they have highly variable major element compositions. This is also consistent with evolution from a common mantle source region by variable amounts of fractional crystallization. If this scenario is correct, it suggests that the combined effects of source composition and fractional crystallization are likely to account for the major element, trace element, and isotopic diversity of all shergottites.  相似文献   
913.
Atomistic simulations have been carried out to investigate the mechanisms of noble gas incorporation in minerals using both the traditional two-region approach and the “supercell” method. The traditional two-region approach has been used to calculate defect energies for Ne, Ar, Kr and Xe incorporation in MgO, CaO, diopside and forsterite in the static limit and at one atmosphere pressure. The possibilities of noble gas incorporation via both substitution and interstitial mechanisms are studied. The favored mechanism varies from mineral to mineral and from noble gas to noble gas. In all minerals studied, the variation of the solution energies of noble gas substitution with atomic radius appears approximately parabolic, analogous to those for 1+, 2+, 3+ and 4+ trace element incorporation on crystal lattice sites. Noble gas solution energies thus also fall on a curve, similar to those previously observed for cations with different charges, but with much lower curvature.The “supercell” method has been used to investigate the pressure dependence of noble gas incorporation in the same systems. Results indicate a large variation of the solubility of the larger noble gases, Kr and Xe with pressure. In addition, explicit simulation of incorporation at the (0 0 1) surface of MgO shows that the solubility of the heavier noble gases may be considerably enhanced by the presence of interfaces.  相似文献   
914.
We studied uptake mechanisms for dissolved Al on amorphous silica by combining bulk-solution chemistry experiments with solid-state Nuclear Magnetic Resonance techniques (27Al magic-angle spinning (MAS) NMR, 27Al{1H} cross-polarization (CP) MAS NMR and 29Si{1H} CP-MAS NMR). We find that reaction of Al (1 mM) with amorphous silica consists of at least three reaction pathways; (1) adsorption of Al to surface silanol sites, (2) surface-enhanced precipitation of an aluminum hydroxide, and (3) bulk precipitation of an aluminosilicate phase. From the NMR speciation and water chemistry data, we calculate that 0.20 (±0.04) tetrahedral Al atoms nm−2 sorb to the silica surface. Once the surface has sorbed roughly half of the total dissolved Al (∼8% site coverage), aluminum hydroxides and aluminosilicates precipitate from solution. These precipitation reactions are dependent upon solution pH and total dissolved silica concentration. We find that the Si:Al stoichiometry of the aluminosilicate precipitate is roughly 1:1 and suggest a chemical formula of NaAlSiO4 in which Na+ acts as the charge compensating cation. For the adsorption of Al, we propose a surface-controlled reaction mechanism where Al sorbs as an inner-sphere coordination complex at the silica surface. Analogous to the hydrolysis of , we suggest that rapid deprotonation by surface hydroxyls followed by dehydration of ligated waters results in four-coordinate (>SiOH)2Al(OH)2 sites at the surface of amorphous silica.  相似文献   
915.
Dissolved Fe concentrations in subterranean estuaries, like their river-seawater counterparts, are strongly controlled by non-conservative behavior during mixing of groundwater and seawater in coastal aquifers. Previous studies at a subterranean estuary of Waquoit Bay on Cape Cod, USA demonstrate extensive precipitation of groundwater-borne dissolved ferrous iron and subsequent accumulation of iron oxides onto subsurface sands. Waquoit Bay is thus an excellent natural laboratory to assess the mechanisms of Fe-isotope fractionation in redox-stratified environments and determine potential Fe-isotope signatures of groundwater sources to coastal seawater. Here, we report Fe isotope compositions of iron-coated sands and porewaters beneath the intertidal zone of Waquoit Bay. The distribution of pore water Fe shows two distinct sources of Fe: one residing in the upward rising plume of Fe-rich groundwater and the second in the salt-wedge zone of pore water. The groundwater source has high Fe(II) concentration consistent with anoxic conditions and yield δ56Fe values between 0.3 and −1.3‰. In contrast, sediment porewaters occurring in the mixing zone of the subterranean estuary have very low δ56Fe values down to −5‰. These low δ56Fe values reflect Fe-redox cycling and result from the preferential retention of heavy Fe-isotopes onto newly formed Fe-oxyhydroxides. Analysis of Fe-oxides precipitated onto subsurface sands in two cores from the subterranean estuary revealed strong δ56Fe and Fe concentration gradients over less than 2m, yielding an overall range of δ56Fe values between −2 and 1.5‰. The relationship between Fe concentration and δ56Fe of Fe-rich sands can be modeled by the progressive precipitation of Fe-oxides along fluid flow through the subterranean estuary. These results demonstrate that large-scale Fe isotope fractionation (up to 5‰) can occur in subterranean estuaries, which could lead to coastal seawater characterized by very low δ56Fe values relative to river values.  相似文献   
916.
Fourier transform infrared spectrometry (FTIR) analyses of olivines from peridotite xenoliths found in southern African kimberlites indicate 0 to 80 ppm H2O concentrations. OH absorbance profiles across olivine grains show homogeneous H contents from core to edge for most samples. In one sample the olivines are H-free, while another has olivines characterized by lower H contents at the grain edges compared to the cores, indicating H loss during transport of the xenolith to the surface. Flat or near-flat H profiles place severe constraints on the duration of H loss from olivine grains, with implications for kimberlite magma ascent rates. Diffusion equations were used to estimate times of H loss of about 4 h for the sample with heterogeneous olivine H contents. Resulting kimberlite ascent rates are calculated to be 5-37 m s−1 minimum, although these estimates are highly dependent on volatile contents and degassing behavior of the host kimberlite magma. Xenolithic olivines from alkali basalts generally have lower H contents and more pronounced H diffusion profiles than do those from kimberlites. This difference is likely caused by higher magma temperatures and lower ascent rates of alkali basalts compared to kimberlites.  相似文献   
917.
δ34S and sulfate concentrations were determined in snow pit samples using a thermal ionization mass spectrometric technique capable of 0.2‰ accuracy and requires ≈5 μg (0.16 μmol) natural S. The technique utilizes a 33S-36S double spike for instrumental mass fractionation correction, and has been applied to snow pit samples collected from the Inilchek Glacier, Kyrgyzstan and from Summit, Greenland. These δ34S determinations provide the first high-resolution seasonal data for these sites, and are used to estimate seasonal sulfate sources. Deuterium (δD) and oxygen (δ18O) isotope data show that the Inilchek and Summit snow pit samples represent precipitation over ≈20 months.The δ34S values for the Inilchek ranged from +2.6 ± 0.4‰ to +7.6 ± 0.4‰ on sample sizes ranging from 0.3 to 1.8 μmol S. δ34S values for Greenland ranged from +3.6 ± 0.7‰ to +13.3 ± 5‰ for sample sizes ranging from 0.05 to 0.29 μmol S. The concentration ranged from 92.6 ± 0.4 to 1049 ± 4 ng/g for the Inilchek and 18 ± 9 to 93 ± 6 ng/g for the Greenland snow pit. Anthropogenic sulfate dominates throughout the sampled time interval for both sites based on mass balance considerations. Additionally, both sites exhibit a seasonal signature in both δ34S and concentration. The thermal ionization mass spectrometric technique has three advantages compared to gas source isotopic methods: (1) sample size requirements of this technique are 10-fold less permitting access to the higher resolution S isotope record of low concentration snow and ice, (2) the double spike technique permits δ34S and S concentration to be determined simultaneously, and (3) the double spike is an internal standard.  相似文献   
918.
Earth’s core may contain C, and it has been suggested that C in the core could stabilize the formation of a solid inner core composed of Fe3C. We experimentally examined the Fe-C system at a pressure of 5 GPa and determined the Fe-C phase diagram at this pressure. In addition, we measured solid metal/liquid metal partition coefficients for 17 trace elements and examined the partitioning behavior between Fe3C and liquid metal for 14 trace elements. Solid metal/liquid metal partition coefficients are similar to those found in one atmosphere studies, indicating that the effect of pressure to 5 GPa is negligible. All measured Fe3C/liquid metal partition coefficients investigated are less than one, such that all trace elements prefer the C-rich liquid to Fe3C. Fe3C/liquid metal partition coefficients tend to decrease with decreasing atomic radii within a given period. Of particular interest, our 5 GPa Fe-C phase diagram does not show any evidence that the Fe-Fe3C eutectic composition shifts to lower C contents with increasing pressure, which is central to the previous reasoning that the inner core may be composed of Fe3C.  相似文献   
919.
It has long been customary to assume that in the bulk composition of the Earth, all refractory-lithophile elements (including major oxides Al2O3 and CaO, all of the REE, and the heat-producing elements Th and U) occur in chondritic, bulk solar system, proportion to one another. Recently, however, Nd-isotopic studies (most notably Boyet M. and Carlson R. W. (2006) A new geochemical model for the Earth’s mantle inferred from 146Sm-142Nd systematics. Earth Planet. Sci. Lett.250, 254-268) have suggested that at least the outer portion of the planet features a Nd/Sm ratio depleted to ∼0.93 times the chondritic ratio. The primary reaction to this type of evidence has been to invoke a “hidden” reservoir of enriched matter, sequestered into the deepest mantle as a consequence of primordial differentiation. I propose a hypothesis that potentially explains the evidence for Nd/Sm depletion in a very different way. Among the handful of major types of differentiated asteroidal meteorites, two (ureilites and aubrites) are ultramafic restites so consistently devoid of plagioclase that meteoriticists were once mystified as to how all the complementary plagioclase-rich matter (basalt) was lost. The explanation appears to be basalt loss by graphite-fueled explosive volcanism on roughly 100-km sized planetesimals; with the dispersiveness of the process dramatically enhanced, relative to terrestrial experience, because the pyroclastic gases expand into vacuous space (Wilson L. and Keil K. (1991) Consequences of explosive eruptions on small Solar System bodies: the case of the missing basalts on the aubrite parent body. Earth Planet. Sci. Lett.104, 505-512). By analogy with lunar pyroclastic products, the typical size of pyroclastic melt/glass droplets under these circumstances will be roughly 0.1 mm. Once separated from an asteroidal or planetesimal gravitational field, droplets of this size will generally spiral toward the Sun, rather than reaccrete, because drag forces such the Poynting-Robertson effect quickly modify their orbits (the semimajor axis, in a typical scenario, is reduced by several hundred km during the first trip around the Sun). Assuming a similar process occurred on many of the Earth’s precursor planetesimals while they were still roughly 100 km in diameter, the net effect would be a depleted composition for the final Earth. I have modeled the process of trace-element depletion in the planetesimal mantles, assuming the partial melting was nonmodal and either batch or dynamic in terms of the melt-removal style. Assuming the process is moderately efficient, typical final-Earth Nd/Sm ratios are 0.93-0.96 times chondritic. Depletion is enhanced by a relatively low assumed residual porosity in batch-melting scenarios, but dampened by a relatively high value for “continuous” residue porosity in dynamic melting scenarios. Pigeonite in the source matter has a dampening effect on depletion. There are important side effects to the Nd/Sm depletion. The heat-producing elements, Th, U and K, might be severely depleted. The Eu/Eu ratio of the planet is unlikely to remain precisely chondritic. One of the most inevitable side effects, depletion of the Al/Ca ratio, is consistent with an otherwise puzzling aspect of the composition of the upper mantle. A perfectly undepleted composition for the bulk Earth is dubious.  相似文献   
920.
In natural weathering systems, both the chemistry and the topography of mineral surfaces change as rocks and minerals equilibrate to surface conditions. Most geochemical research has focused on changes in solution chemistry over time; however, temporal changes in surface topography may also yield information about rates and mechanisms of dissolution. We use stochastic dissolution simulations of a regular 2-D lattice with reaction mechanisms defined in terms of nearest neighbor interactions to elucidate how the surface area and reactivity of a crystal evolve during dissolution. Despite the simplicity of the model, it reproduces key features observed or inferred for mineral dissolution. Our model results indicate that: (i) dissolving surfaces reach a steady-state conformation after sufficient dissolution time, (ii) linear defects cause surface area and dissolution rate to vary in concert with one another, (iii) sigmoidal and non-sigmoidal rate vs. free-energy of reaction (ΔGrxn) behavior can be rationalized in terms of the multiple steps occurring during dissolution, and (iv) surface roughness as a function of ΔGrxn is highly sensitive to the reaction mechanism. When simulated times to reach steady-state are compared to published time series rate data using suitable scaling, good agreement is found for silicate minerals while the model significantly over-predicts the duration of the transient for Fe and Al oxides. The implication of our simple model is that many aspects of mineral dissolution behavior, including approach to steady-state, sigmoidal vs. non-sigmoidal rate vs. ΔGrxn behavior, and development of rougher surfaces in conditions further from equilibrium can be explained by nearest neighbor interactions and simple Kossel-type models where reactivity of a surface is defined in terms of perfect surface, step, and kink sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号