首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41875篇
  免费   2008篇
  国内免费   2124篇
测绘学   1113篇
大气科学   3998篇
地球物理   9099篇
地质学   15740篇
海洋学   3905篇
天文学   8373篇
综合类   752篇
自然地理   3027篇
  2022年   464篇
  2021年   696篇
  2020年   588篇
  2019年   728篇
  2018年   1179篇
  2017年   1098篇
  2016年   1317篇
  2015年   932篇
  2014年   1350篇
  2013年   2126篇
  2012年   1619篇
  2011年   2070篇
  2010年   1847篇
  2009年   2281篇
  2008年   1970篇
  2007年   2004篇
  2006年   1915篇
  2005年   1407篇
  2004年   1274篇
  2003年   1208篇
  2002年   1146篇
  2001年   974篇
  2000年   985篇
  1999年   865篇
  1998年   906篇
  1997年   861篇
  1996年   720篇
  1995年   727篇
  1994年   614篇
  1993年   552篇
  1992年   510篇
  1991年   441篇
  1990年   504篇
  1989年   422篇
  1988年   398篇
  1987年   478篇
  1986年   368篇
  1985年   442篇
  1984年   541篇
  1983年   458篇
  1982年   463篇
  1981年   406篇
  1980年   423篇
  1979年   360篇
  1978年   347篇
  1977年   344篇
  1976年   310篇
  1975年   296篇
  1974年   312篇
  1973年   340篇
排序方式: 共有10000条查询结果,搜索用时 463 毫秒
251.
Global oscillations of the Sun (r-modes) with very long periods 1 month are reviewed and studied. Such modes would be trapped in an acoustic cavity formed either by most of the convective envelope or by most of the radiative interior. A turning point frequency giving cavity boundaries is defined and the run of eigenvalues for angular harmonics l 3 are plotted for a conventional solar convection zone. The r-modes show equipartition of oscillatory energy among shells which each contain one antinode in the radial dimension. Toroidal motion is dominant to at least the 14th radial harmonic mode. Viscosity from convective turbulence is strong and would damp any mode in just a few solar rotations if it were the only significant nonadiabatic effect. Radial fine splitting which lifts the degeneracy in n is very small (20 nHz or less) for all n 14 trapped in the envelope. But, if splitting could be detected, we would have a valuable new constraint on solar convection theories.  相似文献   
252.
A nonpolytropic model of a polar coronal hole at 2 R R 5 R is constructed. Our main assumptions are: (1) the magnetic structure of the Sun can be described by a combination of dipole-like and radial fields; (2) in the magnetically dominated region [(v 2/2) < (B 2/8)] the influence of the outflow on the magnetic structure is negligible. The magnetic and thermodynamic structures are obtained by solving the force balance equation for plasma with the observationally derived electron density. Profiles of velocities in the acceleration regime are presented and the influence of the outflow on the thermodynamic structure of the solar corona above the polar region is discussed.This paper is the first part of a joint project of the Space Environment Laboratory, the Joint Institute for Laboratory Astrophysics, and the High Altitude Observatory, NCAR. The second paper by Munro and Tzur is in preparation.Work done while at the Space Environment Laboratory, NOAA, ERL, Boulder, CO 80303, U.S.A.1982–83 Visiting Fellow at the Joint Institute for Laboratory Astrophysics, National Bureau of Standards and University of Colorado.The National Center for Atmospheric Research is sponsored by the National Science Foundation.Visitor at NCAR.  相似文献   
253.
The frequency of binaries with degenerate secondary components was evaluated according to the spectral types of the primaries. It appears that this proportion is 25% for binaries with giant primary components, and less than about 17% for dwarfs.Communication presented at the International Conference on Astrometric Binaries, held on 13–15 June, 1984, at the Remeis-Sternwarte Bamberg, Germany, to commemorate the 200th anniversary of the birth of Friedrich Wilhelm Bessel (1784–1846).  相似文献   
254.
The production of X-rays and gamma-rays in bursts is believed to be due to the rapid burning of matter accreted onto a neutron star surface from its companion, most probably a giant star. The accreted matter consists mainly of hydrogen and helium and a very small amount of heavy elements. Due to the infall of matter, the temperature at the bottom layers is raised to a value of the order of 108 K. The neutron star surface density is>107 g cm–3. As hydrogen burning is a slow process under any temperature and density conditions, we consider the helium-burning reactions as the source of gamma-rays in the neutron star surface. Under high-density conditions the ordinary laboratory reaction rates should become modified. At high-density conditions, the strong screening effect due to the polarising cloud of electrons around the ions become important and enhances the reaction rates considerably. The helium-burning reactions are calculated under such conditions. The abundances of helium-burning products such as12C, 116O, and20Ne, etc., are computed. Under high-density and temperature conditions carbon is found to be more abundant than oxygen. Neon is completely absent in almost all the relevant physical conditions in which a strong screening effect is operative. It is suggested that explosive burning of accreted helium of 10–13 M will account for the observed energy of gamm-ray burst.  相似文献   
255.
Wave conversion mechanisms causing large-frequency shifts are considered for an electron-positron plasma in a strong magnetic field. In particular, we discuss the effects of the nonlinear erenkov as well as the cyclotron resonances in order to associate pulsar radio-emissions with our present model for nonlinear conversion of high-frequency radiation into the low-frequency region.  相似文献   
256.
The influence of the Landau-Pomeranchuk effect on the development of a shower generated by ultrarelativistic particles bombarding the surface of a pulsar is discussed. Because of this effect, the path length of the shower increases while low-energy photon generation is strongly suppressed. In view of this, the mechanism of pair production suggested by Cheng, Ruderman, and Jones for the pulsar magnetosphere, may be essential only for pulsars whose magnetic field intensity at the surface lies in a relatively narrow range of aroundB 1012 G.  相似文献   
257.
P. L. Bornmann 《Solar physics》1985,102(1-2):111-130
The light curves of soft X-ray lines, observed by the Flat Crystal Spectrometer on Solar Maximum Mission during eight solar flares are modeled to determine the plasma temperature and emission measure as functions of time using the method first presented by Bornmann (1985, Paper I), but modified to include a 2 search routine. With this modification the technique becomes more general, more accurate, and applicable throughout the gradual phase of the flare. The model reproduces the light curves of the soft X-ray lines throughout these flares. Model fits were repeated for each flare using five different sets of published line emissivity calculations. The emissivities of Mewe and Gronenschild (1981) consistenly gave the best fits to the observed light curves for each flare.  相似文献   
258.
On the coronograph spectrophotographic records taken on 31.372 UT, August 1979, some faint emission features were found which can be ascribed to Siii and Niii. These emissions were obviously a transient phenomena which were detected only 10 hr after the supposed fall of Comet 1979 XI in the Sun's photosphere. It cannot be excluded that the appearance of Si and Ni lines was triggered by the evaporation of dust particles with a high abundance of heavier elements in the solar corona. This assumption is also supported by intensity distribution of the Fex coronal line around the Sun's limb. The maximum coincide with the position angle of the projected path of the comet.  相似文献   
259.
It is proposed that the solar flare phenomenon can be understood as a manifestation of the electrodynamic coupling process of the photosphere-chromosphere-corona system as a whole. The system is coupled by electric currents, flowing along (both upward and downward) and across the magnetic field lines, powered by the dynamo process driven by the neutral wind in the photosphere and the lower chromosphere. A self-consistent formulation of the proposed coupling system is given. It is shown in particular that the coupling system can generate and dissipate the power of 1029 erg s#X2212;1 and the total energy of 1032 erg during a typical life time (103 s) of solar flares. The energy consumptions include Joule heat production, acceleration of current-carrying particles along field lines, magnetic energy storage and kinetic energy of plasma convection. The particle acceleration arises from the development of field-aligned potential drops of 10–150 kV due to the loss-cone constriction effect along the upward field-aligned currents, causing optical, X-ray and radio emissions. The total number of precipitating electrons during a flare is shown to be of order 1037–1038.  相似文献   
260.
Simultaneous microwave and X-ray observations are presented for a solar flare detected on May 8, 1980 starting at 19:37 UT. The X-ray observations were made with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission and covered the energy range from 28–490 keV with a time resolution of 10 ms. The microwave observations were made with the 5 and 45 foot antennas at the Itapetinga Radio Observatory at frequencies of 7 and 22 GHz, with time resolutions of 100 ms and 1 ms, respectively. Detailed correlation analysis of the different time profiles of the event show that the major impulsive peaks in the X-ray flux preceded the corresponding microwave peaks at 22 GHz by about 240 ms. For this particular burst the 22 GHz peaks preceded the 7 GHz by about 1.5 s. Observed delays of the microwave peaks are too large for a simple electron beam model but they can be reconciled with the speeds of shock waves in a thermal model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号