首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   9篇
  国内免费   2篇
测绘学   8篇
大气科学   28篇
地球物理   70篇
地质学   69篇
海洋学   12篇
天文学   34篇
综合类   1篇
自然地理   20篇
  2022年   3篇
  2021年   2篇
  2020年   9篇
  2019年   7篇
  2018年   9篇
  2017年   11篇
  2016年   14篇
  2015年   17篇
  2014年   9篇
  2013年   16篇
  2012年   4篇
  2011年   18篇
  2010年   9篇
  2009年   10篇
  2008年   25篇
  2007年   8篇
  2006年   9篇
  2005年   2篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   6篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有242条查询结果,搜索用时 609 毫秒
11.
The Tibetan plateau is host to numerous ~N‐S striking graben that have accommodated E‐W directed extension. The development of these structures has been interpreted to reflect a variety of different geological processes including plateau collapse, oroclinal bending or mid‐to‐lower crustal flow. New 40Ar/39Ar thermochronology and quartz c‐axis data from the Thakkhola graben of west‐central Nepal show that E‐W extension was ongoing at least locally by the early Miocene (ca. 17 Ma). Our new, and previously published chronologic information on the initiation of graben across the orogen shows that they typically developed immediately after cessation of the South Tibetan detachment system, a structural network that facilitated differential southward movement of the upper and middle crust. We interpret this fundamental switch in orogen kinematics to reflect recoupling of the middle and upper Himalayan crust such that the subsequent widespread flow of the mid‐to‐lower crust out of the system to the east forced brittle accommodation in the upper crust.  相似文献   
12.
Concentrations of dissolved organic matter (DOM) and ultraviolet/visible light absorbance decrease systematically as groundwater moves through the unsaturated zones overlying aquifers and along flowpaths within aquifers. These changes occur over distances of tens of meters (m) implying rapid removal kinetics of the chromophoric DOM that imparts color to groundwater. A one-compartment input-output model was used to derive a differential equation describing the removal of DOM from the dissolved phase due to the combined effects of biodegradation and sorption. The general solution to the equation was parameterized using a 2-year record of dissolved organic carbon (DOC) concentration changes in groundwater at a long-term observation well. Estimated rates of DOC loss were rapid and ranged from 0.093 to 0.21 micromoles per liter per day (μM d?1), and rate constants for DOC removal ranged from 0.0021 to 0.011 per day (d?1). Applying these removal rate constants to an advective-dispersion model illustrates substantial depletion of DOC over flow-path distances of 200 m or less and in timeframes of 2 years or less. These results explain the low to moderate DOC concentrations (20–75 μM; 0.26–1 mg L?1) and ultraviolet absorption coefficient values (a 254?<?5 m?1) observed in groundwater produced from 59 wells tapping eight different aquifer systems of the United States. The nearly uniform optical clarity of groundwater, therefore, results from similarly rapid DOM-removal kinetics exhibited by geologically and hydrologically dissimilar aquifers.  相似文献   
13.
Information about the next Kokomeren Summer School that will take place on August 15–30, 2018, is provided.  相似文献   
14.
Airborne correlation spectrometry (COSPEC) was used to measure the rate of SO2 emission at White Island on three dates, i.e., November 1983, 1230 ± 300 t/d; November 1984, 320 ± 120 t/d; and January 1985, 350 ± 150 t/d (t = metric tons). The lower emission rates are likely to reflect the long-term emission rates, whereas the November 1983 rate probably reflects conditions prior to the eruption of December 1983. The particle flux in the White Island plume, as determined with a quartz crystal microbalance/cascade in November 1983, was 1.3 t/d, unusually low for volcanic plumes. The observed plume particles, as shown from scanning electron microscopy, include halite, native sulfur, and silicates and are broadly similar to other volcanic plumes.Gas analyses from high-temperature volcanic fumaroles collected from June 1982 through November 1984 werde used together with the COSPEC data to estimate the flux of other gas species from White Island. The rates estimated are indicative of the long-term volcanic emission, i.e., 8000–9000 t/d H2O, 900–1000 t/d CO2, 70–80 t/d HCl, 1.5–2 t/d HF, and about 0.2 t/d NH3. The long-term thermal power output at White Island is estimated at about 400 MW.  相似文献   
15.
An unusual suite of silicified rocks was excavated during a recent harbour-deepening project in Tampa Bay, Florida. These rocks, which we have termed “box-work geodes”, are composed of convoluted, intersecting silica walls enclosing cavities which are either voids or filled with relatively pure monoclinic palygorskite. The “box-work geodes” are interpreted as having formed in shallow lagoonal environments, similar to the Coorong Lagoon of South Australia. Synaeresis of syngenetic palygorskite was followed by opal deposition and case hardening of the material. Subsequent chemical deposition of chalcedony, megacrystalline quartz, barite, and calcite on the void facing walls indicates an open chemical system.

The existence of opal saturated lagoons, as inferred from the “box-work geodes”, suggests that much of the replacement chert, porcelanite, and silicified fossils in the Tertiary deposits of peninsular Florida formed in the shallow subsurface. Subsequent weathering of carbonates and clays not encapsulated in the box works has resulted in formation of a green montmorillonite residual clay bed.  相似文献   

16.
Bhandari  Vimalkumar  O’Keefe  Kyle 《GPS Solutions》2017,21(4):1707-1720
GPS Solutions - Doppler collision is a unique phenomenon in GNSS where tracking errors are introduced in the measurements due to cross-correlation between two or more satellites. It occurs when the...  相似文献   
17.
A study was conducted to understand the hydrogeological processes dominating in the North 24 Parganas and South 24 Parganas based on representative 39 groundwater samples collected from selected area. The abundance of major ions was in the order of Ca2+ > Na+ > Mg2+ > K+ > Fe2+ for cations and HCO3 ? > PO4 3? > Cl? > SO4 2? > NO3 ? for anions. Piper trilinear diagram was plotted to understand the hydrochemical facies. Most of the samples are of Ca-HCO3 type. Based on conventional graphical plots for (Ca + Mg) vs. (SO4 + HCO3) and (Na + K) vs. Cl, it is interpreted that silicate weathering and ion exchange are the dominant processes within the study area. Previous studies have reported quartz, feldspar, illite, and chlorite clay minerals as the major mineral components obtained by the XRD analysis of sediments. Mineralogical investigations by SEM and EDX of aquifer materials have shown the occurrence of arsenic as coating on mineral grains in the silty clay as well as in the sandy layers. Excessive withdrawal of groundwater for irrigation and drinking purposes is responsible for fluctuation of the water table in the West Bengal. Aeration beneath the ground surface caused by fluctuation of the water table may lead to the formation of carbonic acid. Carbonic acid is responsible for the weathering of silicate minerals, and due to the formation of clay as a product of weathering, ion exchange also dominates in the area. These hydrogeological processes may be responsible for the release of arsenic into the groundwater of the study area, which is a part of North 24 Parganas and South 24 Parganas.  相似文献   
18.
19.
We present a narrative of the eruptive events culminating in the cataclysmic January 15, 2022 eruption of Hunga Tonga-Hunga Ha'apai Volcano by synthesizing diverse preliminary seismic, volcanological, sound wave, and lightning data available within the first few weeks after the eruption occurred. The first hour of eruptive activity produced fast-propagating tsunami waves, long-period seismic waves, loud audible sound waves, infrasonic waves, exceptionally intense volcanic lightning and an unsteady volcanic plume that transiently reached—at 58 ?km—the Earth's mesosphere. Energetic seismic signals were recorded worldwide and the globally stacked seismogram showed episodic seismic events within the most intense periods of phreatoplinian activity, and they correlated well with the infrasound pressure waveform recorded in Fiji. Gravity wave signals were strong enough to be observed over the entire planet in just the first few hours, with some circling the Earth multiple times subsequently. These large-amplitude, long-wavelength atmospheric disturbances come from the Earth's atmosphere being forced by the magmatic mixture of tephra, melt and gasses emitted by the unsteady but quasi-continuous eruption from 0402±1–1800 UTC on January 15, 2022. Atmospheric forcing lasted much longer than rupturing from large earthquakes recorded on modern instruments, producing a type of shock wave that originated from the interaction between compressed air and ambient (wavy) sea surface. This scenario differs from conventional ideas of earthquake slip, landslides, or caldera collapse-generated tsunami waves because of the enormous (~1000x) volumetric change due to the supercritical nature of volatiles associated with the hot, volatile-rich phreatoplinian plume. The time series of plume altitude can be translated to volumetric discharge and mass flow rate. For an eruption duration of ~12 ?h, the eruptive volume and mass are estimated at 1.9 ?km3 and ~2 900 ?Tg, respectively, corresponding to a VEI of 5–6 for this event. The high frequency and intensity of lightning was enhanced by the production of fine ash due to magma—seawater interaction with concomitant high charge per unit mass and the high pre-eruptive concentration of dissolved volatiles. Analysis of lightning flash frequencies provides a rapid metric for plume activity and eruption magnitude. Many aspects of this eruption await further investigation by multidisciplinary teams. It represents a unique opportunity for fundamental research regarding the complex, non-linear behavior of high energetic volcanic eruptions and attendant phenomena, with critical implications for hazard mitigation, volcano forecasting, and first-response efforts in future disasters.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号