首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   979篇
  免费   24篇
  国内免费   27篇
测绘学   34篇
大气科学   156篇
地球物理   193篇
地质学   251篇
海洋学   257篇
天文学   65篇
综合类   17篇
自然地理   57篇
  2023年   8篇
  2022年   11篇
  2021年   7篇
  2020年   18篇
  2019年   25篇
  2018年   37篇
  2017年   44篇
  2016年   74篇
  2015年   37篇
  2014年   60篇
  2013年   85篇
  2012年   62篇
  2011年   49篇
  2010年   56篇
  2009年   48篇
  2008年   48篇
  2007年   40篇
  2006年   43篇
  2005年   41篇
  2004年   29篇
  2003年   21篇
  2002年   19篇
  2001年   19篇
  2000年   17篇
  1999年   22篇
  1998年   9篇
  1997年   8篇
  1996年   7篇
  1995年   7篇
  1994年   3篇
  1993年   5篇
  1992年   4篇
  1991年   7篇
  1990年   3篇
  1989年   2篇
  1987年   6篇
  1986年   2篇
  1985年   2篇
  1984年   9篇
  1983年   3篇
  1982年   3篇
  1981年   7篇
  1979年   2篇
  1978年   2篇
  1974年   1篇
  1973年   5篇
  1972年   2篇
  1971年   2篇
  1968年   1篇
  1967年   3篇
排序方式: 共有1030条查询结果,搜索用时 10 毫秒
51.
Bhavya  P. S.  Min  Jun-Oh  Kim  Min-Seob  Jang  Hyo Keun  Kim  Kwanwoo  Kang  Jae Joong  Lee  Jae Hyung  Lee  Dabin  Jo  Naeun  Kim  Myung Joon  Kim  Yejin  Lee  Junbeom  Lee  Chang Hwa  Bae  Hyeonji  Yoo  Hyeju  Park  Sanghoon  Yun  Mi Sun  Lee  Sang Heon 《Ocean Science Journal》2019,54(4):515-528
Ocean Science Journal - Investigations on marine N2 fixation have gained momentum since 1960s with eventual establishments of relevant methodologies to identify species involved and quantify the...  相似文献   
52.
53.
54.
The shape optimization of the 2-dimensional wing in ground effect (WIG) has been performed by the integration of CFD (computational fluid dynamics) and MOGA (multi-objective genetic algorithm). Because of the trade-off between the aerodynamic forces and the height stability, it is difficult to satisfy the design requirements of efficiency and stability at the same time. In this study, the lift coefficient, the lift-drag ratio and the static height stability are chosen as the objective functions to obtain the optimal wing profiles of a WIG craft. An NACA0015 airfoil is used for the baseline model; the aerodynamic characteristics of the base model are compared with that of the optimal solutions. The profile of the airfoil is constructed by four Bezier curves with fourteen control points resulting in the eighteen coordinates, which are adopted as the design variables. The optimal solutions of the multi-objective optimization are not unique but a set of the non-dominated optima: the Pareto frontiers or a Pareto set. As the results of the multi-objective optimization, the forty Pareto optima, which include high-lift, high-efficiency, and more stable airfoils on the edge of the 3-dimensional objective space, are obtained at thirty evolutions of the generation.  相似文献   
55.
P-SH conversion is commonly observed in teleseismic P waves, and is often attributed to dipping interfaces beneath the receiver. Our modelling suggests an alternative explanation in terms of flat-layered anisotropy. We use reflectivity techniques to compute three-component synthetic seismograms in a 1-D anisotropic layered medium. For each layer of the medium, we prescribe values of seismic velocities and hexagonally symmetric anisotropy about a common symmetry axis of arbitrary orientation. A compressional wave in an anisotropic velocity structure suffers conversion to both SV -and SH -polarized shear waves, unless the axis of symmetry is everywhere vertical or the wave travels parallel to all symmetry axes. The P-SV conversion forms the basis of the widely used 'receiver function' technique. The P-SH conversion occurs at interfaces where one or both layers are anisotropic. A tilted axis of symmetry and a dipping interface in isotropic media produce similar amplitudes of both direct ( P ) and converted ( Ps ) phases, leaving the backazimuth variation of the P-Ps delay as the main discriminant. Seismic anisotropy with a tilted symmetry axis leads to complex synthetic seismograms in velocity models composed of just a few flat homogeneous layers. It is possible therefore to model observations of P coda with prominent transverse components with relatively simple 1-D velocity structures. Successful retrieval of salient model characteristics appears possible using multiple realizations of a genetic-algorithm (GA) inversion of P coda from several backazimuths. Using GA inversion, we determine that six P coda recorded at station ARU in central Russia are consistent with models that possess strong (> 10 per cent) anisotropy in the top 5 km and between 30 and 43 km depth. The symmetry axes are tilted, and appear aligned with the seismic anisotropy orientation in the mantle under ARU suggested by SKS splitting.  相似文献   
56.
57.
Terrorist attacks and natural disasters have potentially severe economic consequences in terms of property damage and business interruption. However, experience from the September 11 World Trade Center attack and other disasters indicates that the economy has a great deal of resilience. This refers to the ability to dampen the maximum potential economic output (business interruption) loss. One of the most prominent sources of resilience is the ability of businesses to reschedule, or recapture, lost production after the event. Although there have been applications of a fixed parameter recapture factor for each of several aggregated sectors of the economy, there has been little formal analysis of this resilience action. This study offers a theoretic framework for analyzing production rescheduling. It distinguishes the major conditions influencing two aspects that have previously been neglected: (1) the maximum time span over which the rescheduling can take place and (2) the likely decline of the maximum recapture as the business interruption increases. We divide the relevant time path into two periods after recovery. One is a function of a recaptured output path after recovery to the status of normal production. The other is a function for the maximum recaptured production, based on the recaptured output path. The recaptured output path function is assumed to follow a normal distribution function, and hence, total recaptured output follows the cumulative normal distribution function over time after productive capacity is restored. Also, we develop a new cumulative normal distribution function for interruption time duration, which is symmetric with respect to the output axis. This recapture function has unknown parameters. Empirical data on the recaptured amounts following an actual disaster can be used to estimate the parameters of this function using simulation methods.  相似文献   
58.
Geotechnical and geological properties of limestone samples from the Mokattam Quarry in Cairo, Egypt, were determined in order to provide prior information for the selection of suitable methods for the conservation of stone monuments around Cairo. A commercial chemical consolidant (Wacker OH 100) was applied to fill the pore spaces and to strengthen the weathered rock. Filling of pore spaces was confirmed by the decrease of both porosity and permeability of rock samples after the application of the consolidant. Analysis by mercury porosimeter showed most effective consolidation results for pore spaces from 0.75 to 1.0 µm in diameter, which were those mainly observed in the samples. Ultrasonic velocity did not show any significant evidence but an increase in strength, observed as an increase in the point load index after the consolidation process was completed, confirmed that the filling and consolidation process worked effectively. Point load testing can thus be used in preference when the number of samples available for laboratory testing is limited. From the color analysis, it was shown that there was no noticeable color change after the application of consolidant Wacker OH 100. The combinations of laboratory tests adopted in this study can be applicable to the planning of conservation of other stone monuments.  相似文献   
59.
Blasting is often a necessary part of mining and construction operations, and is the most cost-effective way to break rock, but blasting generates both noise and ground vibration. In urban areas, noise and vibration have an environmental impact, and cause structural damage to nearby structures. Various wave-screening methods have been used for many years to reduce blast-induced ground vibration. However, these methods have not been quantitatively studied for their reduction effect of ground vibration. The present study focused on the quantitative assessment of the effectiveness in vibration reduction of line-drilling as a screening method using a numerical method. Two numerical methods were used to analyze the reduction effect toward ground vibration, namely, the “distinct element method” and the “non-linear hydrocode.” The distinct element method, by particle flow code in two dimensions (PFC 2D), was used for two-dimensional parametric analyses, and some cases of two-dimensional analyses were analyzed three-dimensionally using AUTODYN 3D, the program of the non-linear hydrocode. To analyze the screening effectiveness of line-drilling, parametric analyses were carried out under various conditions, with the spacing, diameter of drill holes, distance between the blasthole and line-drilling, and the number of rows of drill holes, including their arrangement, used as parameters. The screening effectiveness was assessed via a comparison of the vibration amplitude between cases both with and without screening. Also, the frequency distribution of ground motion of the two cases was investigated through fast Fourier transform (FFT), with the differences also examined. From our study, it was concluded that line-drilling as a screening method of blast-induced waves was considerably effective under certain design conditions. The design details for field application have also been proposed.  相似文献   
60.
The direct and semi-direct radiative effects of anthropogenic aerosols on the radiative transfer and cloud fields in the Western United States (WUS) according to seasonal aerosol optical depth (AOD) and regional climate are examined using a regional climate model (RCM) in conjunction with the aerosol fields from a GEOS-Chem chemical-transport model (CTM) simulation. The two radiative effects cannot be separated within the experimental design in this study, thus the combined direct- and semi-direct effects are called radiative effects hereafter. The CTM shows that the AOD associated with the anthropogenic aerosols is chiefly due to sulfates with minor contributions from black carbon (BC) and that the AOD of the anthropogenic aerosol varies according to local emissions and the seasonal low-level winds. The RCM-simulated anthropogenic aerosol radiative effects vary according to the characteristics of regional climate, in addition to the AOD. The effects on the top of the atmosphere (TOA) outgoing shortwave radiation (OSRT) range from ?0.2?Wm?2 to ?1?Wm?2. In Northwestern US (NWUS), the maximum and minimum impact of anthropogenic aerosols on OSRT occurs in summer and winter, respectively, following the seasonal AOD. In Arizona-New Mexico (AZNM), the effect of anthropogenic sulfates on OSRT shows a bimodal distribution with winter/summer minima and spring/fall maxima, while the effect of anthropogenic BC shows a single peak in summer. The anthropogenic aerosols affect surface insolation range from ?0.6?Wm?2 to ?2.4?Wm?2, with similar variations found for the effects on OSRT except that the radiative effects of anthropogenic BC over AZNM show a bimodal distribution with spring/fall maxima and summer/winter minima. The radiative effects of anthropogenic sulfates on TOA outgoing longwave radiation (OLR) and the surface downward longwave radiation (DLRS) are notable only in summer and are characterized by strong geographical contrasts; the summer OLR in NWUS (AZNM) is reduced (enhanced) by 0.52?Wm?2 (1.14?Wm?2). The anthropogenic sulfates enhance (reduce) summer DLRS by 0.2?Wm?2 (0.65?Wm?2) in NWUS (AZNM). The anthropogenic BC affect DLRS noticeably only in AZNM during summer. The anthropogenic aerosols affect the cloud water path (CWP) and the radiative transfer noticeably only in summer when convective clouds are dominant. Primarily shortwave-reflecting anthropogenic sulfates decrease and increase CWP in AZNM and NWUS, respectively, however, the shortwave-absorbing anthropogenic BC reduces CWP in both regions. Due to strong feedback via convective clouds, the radiative effects of anthropogenic aerosols on the summer radiation field are more closely correlated with the changes in CWP than the AOD. The radiative effect of the total anthropogenic aerosols is dominated by the anthropogenic sulfates that contribute more than 80% of the total AOD associated with the anthropogenic aerosols.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号