首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   558篇
  免费   8篇
  国内免费   3篇
测绘学   10篇
大气科学   7篇
地球物理   152篇
地质学   245篇
海洋学   37篇
天文学   60篇
综合类   1篇
自然地理   57篇
  2019年   6篇
  2018年   4篇
  2017年   10篇
  2016年   9篇
  2015年   4篇
  2014年   17篇
  2013年   26篇
  2012年   14篇
  2011年   24篇
  2010年   22篇
  2009年   23篇
  2008年   22篇
  2007年   16篇
  2006年   26篇
  2005年   10篇
  2004年   9篇
  2003年   15篇
  2002年   12篇
  2001年   16篇
  2000年   6篇
  1999年   9篇
  1998年   7篇
  1997年   9篇
  1995年   7篇
  1994年   8篇
  1993年   6篇
  1991年   6篇
  1990年   9篇
  1989年   5篇
  1988年   5篇
  1987年   7篇
  1984年   5篇
  1983年   11篇
  1982年   12篇
  1981年   8篇
  1980年   12篇
  1979年   7篇
  1978年   4篇
  1977年   4篇
  1974年   8篇
  1973年   4篇
  1968年   5篇
  1965年   6篇
  1964年   4篇
  1962年   4篇
  1953年   5篇
  1952年   4篇
  1951年   5篇
  1950年   4篇
  1949年   8篇
排序方式: 共有569条查询结果,搜索用时 34 毫秒
451.
We examine the underlying structure of high resolution temporal rainfall by comparing the observed series with surrogate series generated by a invertible nonlinear transformation of a linear process. We document that the scaling properties and long range magnitude correlations of high resolution temporal rainfall series are inconsistent with an inherently linear model, but are consistent with the nonlinear structure of a multiplicative cascade model. This is in contrast to current studies that have reported for spatial rainfall a lack of evidence for a nonlinear underlying structure. The proposed analysis methodologies, which consider two-point correlation statistics and also do not rely on higher order statistical moments, are shown to provide increased discriminatory power as compared to standard moment-based analysis.  相似文献   
452.
453.
The Paleoproterozoic (Statherian) Thelon Basin is located in the Churchill Province of the Canadian Shield, formed following the Trans‐Hudson Orogeny. Basin formation followed an interval of felsic volcanism and weathering of underlying bedrock. The diagenetic evolution of the Thelon lasted about one billion years and was punctuated by fluid movement influenced by tectonic events. Early quartz cements formed in well‐sorted, quartz‐rich facies during diagenetic stage 1; fluids in which these overgrowths formed had δ18O values near 0‰ (Vienna Standard Mean Ocean Water). Uranium‐rich apatite cement (P1) also formed during diagenetic stage 1 indicating that oxygenated, uranium‐bearing pore water was present in the basin early in its diagenetic history. Syntaxial quartz cement (Q1) formed in water with δ18O from ?4 to ?0.8‰ in diagenetic stage 2. Diagenetic stage 3 occurred when the Thelon Formation was at ca. 5 km depth, and was marked by extensive illitization, alteration of detrital grains, and uranium mineralization. Basin‐wide, illite crystallized at ~200 °C by fluids with δ18O values of 5–9‰ and δD values of ?60 to ?31‰, consistent with evolved basinal brines. Tectonism caused by the accretion of Nena at ca. 1600 Ma may have provided the mechanism for brine movement during deep burial. Diagenetic stage 4 is associated with fracturing and emplacement of mafic dikes at ca. 1300 Ma, quartz cement (Q3) in fractures and vugs, further illitization, and recrystallization of uraninite (U2). Q3 cements have fluid inclusions that suggest variable salinities, δ18O values of 1.5–9‰, and δD values of ?97 to ?83‰ for stage 4 brines. K‐feldspar and Mg‐chlorite formed during diagenetic stage 5 at ca. 1000 Ma in upper stratigraphic sequences, and in the west. These phases precipitated from low‐temperature, isotopically distinct fluids. Their distribution indicates that the basin hydrostratigraphy remained partitioned for >600 Ma.  相似文献   
454.
We consider accreting systems in which the central object interacts, via the agency of its magnetic field, with the disc that surrounds it. The disc is turbulent and, so, has a finite effective conductivity. The field sweeps across the face of the disc, thereby forming a current that is directed radially within the disc. In turn, this disc current creates a toroidal field, where the interaction between the disc current and the toroidal field produces a Lorentz force that compresses the disc. We investigate this compression, which creates a magnetic scaleheight of the disc that can be much smaller than the conventional scaleheight. We derive an analytic expression for the magnetic scaleheight and apply it to fully ionized discs.  相似文献   
455.
Particle acceleration is intrinsic to the primary energy release in the impulsive phase of solar flares, and we cannot understand flares without understanding acceleration. New observations in soft and hard X-rays, -rays and coherent radio emissions are presented, suggesting flare fragmentation in time and space. X-ray and radio measurements exhibit at least five different time scales in flares. In addition, some new observations of delayed acceleration signatures are also presented. The theory of acceleration by parallel electric fields is used to model the spectral shape and evolution of hard X-rays. The possibility of the appearance of double layers is further investigated.Report of Team 3, Flares 22 Workshop, Ottawa, May 25–28, 1993.  相似文献   
456.
Very early times in the order of 2–3 μs from the end of the turn‐off ramp for time‐domain electromagnetic systems are crucial for obtaining a detailed resolution of the near‐surface geology in the depth interval 0–20 m. For transient electromagnetic systems working in the off time, an electric current is abruptly turned off in a large transmitter loop causing a secondary electromagnetic field to be generated by the eddy currents induced in the ground. Often, however, there is still a residual primary field generated by remaining slowly decaying currents in the transmitter loop. The decay disturbs or biases the earth response data at the very early times. These biased data must be culled, or some specific processing must be applied in order to compensate or remove the residual primary field. As the bias response can be attributed to decaying currents with its time constantly controlled by the geometry of the transmitter loop, we denote it the ‘Coil Response’. The modelling of a helicopter‐borne time‐domain system by an equivalent electronic circuit shows that the time decay of the coil response remains identical whatever the position of the receiver loop, which is confirmed by field measurements. The modelling also shows that the coil response has a theoretical zero location and positioning the receiver coil at the zero location eliminates the coil response completely. However, spatial variations of the coil response around the zero location are not insignificant and even a few cm deformation of the carrier frame will introduce a small coil response. Here we present an approach for subtracting the coil response from the data by measuring it at high altitudes and then including an extra shift factor into the inversion scheme. The scheme is successfully applied to data from the SkyTEM system and enables the use of very early time gates, as early as 2–3 μs from the end of the ramp, or 5–6 μs from the beginning of the ramp. Applied to a large‐scale airborne electromagnetic survey, the coil response compensation provides airborne electromagnetic methods with a hitherto unseen good resolution of shallow geological layers in the depth interval 0–20 m. This is proved by comparing results from the airborne electromagnetic survey to more than 100 km of Electrical Resistivity Tomography measured with 5 m electrode spacing.  相似文献   
457.
The AND-2A drillcore (Antarctic Drilling Program—ANDRILL) was successfully completed in late 2007 on the Antarctic continental margin (Southern McMurdo Sound, Ross Sea) with the aim of tracking ice proximal to shallow marine environmental fluctuations and to document the 20-Ma evolution of the Erebus Volcanic Province. Lava clasts and tephra layers from the AND-2A drillcore were investigated from a petrographic and stratigraphic point of view and analyzed by the 40Ar–39Ar laser technique in order to constrain the age model of the core and to gain information on the style and nature of sediment deposition in the Victoria Land Basin since Early Miocene. Ten out of 17 samples yielded statistically robust 40Ar–39Ar ages, indicating that the AND-2A drillcore recovered ≤230 m of Middle Miocene (∼128–358 m below sea floor, ∼11.5–16.0 Ma) and >780 m of Early Miocene (∼358–1093 m below sea floor, ∼16.0–20.1 Ma). Results also highlight a nearly continuous stratigraphic record from at least 358 m below sea floor down hole, characterized by a mean sedimentation rate of ∼19 cm/ka, possible oscillations of no more than a few hundreds of ka and a break within ∼17.5–18.1 Ma. Comparison with available data from volcanic deposits on land, suggests that volcanic rocks within the AND-2A core were supplied from the south, possibly with source areas closer to the drill site for the upper core levels, and from 358 m below sea floor down hole, with the “proto-Mount Morning” as the main source.  相似文献   
458.
The El Rito and Galisteo depocenters in north-central New Mexico archive tectonically-driven Paleogene drainage reorganization, the effects of which influenced sedimentation along the northwestern margin of the Gulf of Mexico. Although separated by ~100 km and lacking depositional chronology for the El Rito Formation, the two aforementioned New Mexican depocenters are commonly considered remnants of a single basin with coeval deposition and shared accommodation mechanism. Detrital zircon U-Pb maximum depositional ages indicate that the El Rito and Galisteo formations are not coeval. Moreover, stratigraphic thickness trends and mapping relationships indicate different accommodation mechanisms for the Galisteo and El Rito depocenters; tectonically-induced subsidence versus infilling of incised topography, respectively. The regional unconformity that bounds the base of both the El Rito and Galisteo formations is a correlative surface induced by local tectonic activity and associated drainage reorganization in the early Eocene, and was diachronously buried by northward onlap of fluvial sediments. Detrital zircon distributions in both depocenters indicate increased recycling of Mesozoic strata above the unconformity, but diverge upsection as topographic prominence of local basement-involved uplifts waned. Sediment capture in these depocenters is coeval with deposition in other externally-drained Laramide basins. Further, it corresponds to a period of low Laramide province-derived sediment input and replacement by Appalachian-sourced sediment along the northwestern margin of the Gulf of Mexico during a basin-wide transgression. This illustrates the potential effect that pockets of sediment storage within the catchment of a transcontinental drainage system can have over the sedimentary record in the receiving marine basin.  相似文献   
459.
The importance of geochronology in the study of mineral deposits in general, and of unconformity-type uranium deposits in particular, resides in the possibility to situate the critical ore-related processes in the context of the evolution of the physical and chemical conditions in the studied area. The present paper gives the results of laser step heating 40Ar/39Ar dating of metamorphic host-rock minerals, pre-ore and syn-ore alteration clay minerals, and laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) U/Pb dating of uraninite from a number of basement- and sediment-hosted unconformity-related deposits in the Athabasca Basin, Canada. Post-peak metamorphic cooling during the Trans-Hudson Orogen of rocks from the basement occurred at ca 1,750 Ma and gives a maximum age for the formation of the overlying Athabasca Basin. Pre-ore alteration occurred simultaneously in both basement- and sandstone-hosted mineralizations at ca 1,675 Ma, as indicated by the 40Ar/39Ar dating of pre-ore alteration illite and chlorite. The uranium mineralization age is ca 1,590 Ma, given by LA-ICP-MS U/Pb dating of uraninite and 40Ar/39Ar dating of syn-ore illite, and is the same throughout the basin and in both basement- and sandstone-hosted deposits. The mineralization event, older than previously proposed, as well as several fluid circulation events that subsequently affected all minerals studied probably correspond to far-field, continent-wide tectonic events such as the metamorphic events in Wyoming and the Mazatzal Orogeny (ca 1.6 to 1.5 Ga), the Berthoud Orogeny (ca 1.4 Ga), the emplacement of the McKenzie mafic dyke swarms (ca 1.27 Ga), the Grenville Orogeny (ca 1.15 to 1 Ga), and the assemblage and break-up of Rodinia (ca 1 to 0.85 Ga). The results of the present work underline the importance of basin evolution between ca 1.75 Ga (basin formation) and ca 1.59 Ga (ore deposition) for understanding the conditions necessary for the formation of unconformity-type uranium deposits. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
460.
The 13.1-Moz high-sulfidation epithermal gold deposit of Lagunas Norte, Alto Chicama District, northern Peru, is hosted in weakly metamorphosed quartzites of the Upper Jurassic to Lower Cretaceous Chimú Formation and in overlying Miocene volcanic rocks of dacitic to rhyolitic composition. The Dafne and Josefa diatremes crosscut the quartzites and are interpreted to be sources of the pyroclastic volcanic rocks. Hydrothermal activity was centered on the diatremes and four hydrothermal stages have been defined, three of which introduced Au ± Ag mineralization. The first hydrothermal stage is restricted to the quartzites of the Chimú Formation and is characterized by silice parda, a tan-colored aggregate of quartz-auriferous pyrite–rutile ± digenite infilling fractures and faults, partially replacing silty beds and forming cement of small hydraulic breccia bodies. The δ34S values for pyrite (1.7–2.2?‰) and digenite (2.1?‰) indicate a magmatic source for the sulfur. The second hydrothermal stage resulted in the emplacement of diatremes and the related volcanic rocks. The Dafne diatreme features a relatively impermeable core dominated by milled slate from the Chicama Formation, whereas the Josefa diatreme only contains Chimú Formation quartzite clasts. The third hydrothermal stage introduced the bulk of the mineralization and affected the volcanic rocks, the diatremes, and the Chimú Formation. In the volcanic rocks, classic high-sulfidation epithermal alteration zonation exhibiting vuggy quartz surrounded by a quartz–alunite and a quartz–alunite–kaolinite zone is observed. Company data suggest that gold is present in solid solution or micro inclusions in pyrite. In the quartzite, the alteration is subtle and is manifested by the presence of pyrophyllite or kaolinite in the silty beds, the former resulting from relatively high silica activities in the fluid. In the quartzite, gold mineralization is hosted in a fracture network filled with coarse alunite, auriferous pyrite, and enargite. Alteration and mineralization in the breccias were controlled by permeability, which depends on the type and composition of the matrix, cement, and clast abundance. Coarse alunite from the main mineralization stage in textural equilibrium with pyrite and enargite has δ34S values of 24.8–29.4?‰ and $ {\delta^{18 }}{{\mathrm{O}}_{{\mathrm{S}{{\mathrm{O}}_4}}}} $ values of 6.8–13.9?‰, consistent with H2S as the dominant sulfur species in the mostly magmatic fluid and constraining the fluid composition to low pH (0–2) and logfO2 of ?28 to ?30. Alunite–pyrite sulfur isotope thermometry records temperatures of 190–260 °C; the highest temperatures corresponding to samples from near the diatremes. Alunite of the third hydrothermal stage has been dated by 40Ar/39Ar at 17.0?±?0.22 Ma. The fourth hydrothermal stage introduced only modest amounts of gold and is characterized by the presence of massive alunite–pyrite in fractures, whereas barite, drusy quartz, and native sulfur were deposited in the volcanic rocks. The $ {\delta^{18 }}{{\mathrm{O}}_{{\mathrm{S}{{\mathrm{O}}_4}}}} $ values of stage IV alunite vary between 11.5 and 11.7?‰ and indicate that the fluid was magmatic, an interpretation also supported by the isotopic composition of barite (δ34S?=?27.1 to 33.8?‰ and $ {\delta^{18 }}{{\mathrm{O}}_{{\mathrm{S}{{\mathrm{O}}_4}}}} $ ?=?8.1 to 12.7?‰). The Δ34Spy–alu isotope thermometry records temperatures of 210 to 280 °C with the highest values concentrated around the Josefa diatreme. The Lagunas Norte deposit was oxidized to a depth of about 80 m below the current surface making exploitation by heap leach methods viable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号