首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   545篇
  免费   8篇
  国内免费   2篇
测绘学   10篇
大气科学   7篇
地球物理   148篇
地质学   236篇
海洋学   37篇
天文学   61篇
综合类   1篇
自然地理   55篇
  2019年   6篇
  2018年   4篇
  2017年   10篇
  2016年   9篇
  2015年   4篇
  2014年   17篇
  2013年   26篇
  2012年   13篇
  2011年   23篇
  2010年   22篇
  2009年   22篇
  2008年   22篇
  2007年   16篇
  2006年   25篇
  2005年   10篇
  2004年   9篇
  2003年   15篇
  2002年   11篇
  2001年   15篇
  2000年   5篇
  1999年   9篇
  1998年   6篇
  1997年   9篇
  1995年   7篇
  1994年   8篇
  1993年   5篇
  1991年   6篇
  1990年   9篇
  1989年   5篇
  1988年   5篇
  1987年   7篇
  1984年   5篇
  1983年   9篇
  1982年   12篇
  1981年   8篇
  1980年   12篇
  1979年   7篇
  1978年   4篇
  1977年   4篇
  1974年   7篇
  1973年   5篇
  1968年   4篇
  1965年   6篇
  1964年   4篇
  1962年   4篇
  1953年   5篇
  1952年   4篇
  1951年   5篇
  1950年   4篇
  1949年   8篇
排序方式: 共有555条查询结果,搜索用时 31 毫秒
321.
Chemical and age data led Turner, Jarrard and Forbes to conclude that the origin of the Pratt-Welker seamount chain in the Gulf of Alaska cannot be attributed to a single cause. They argued instead that some seamounts in the chain formed over a hotspot, away from a ridge, while others formed near a ridge. They also noted that the latter group of guyots were generally deeper than the former and they used this observation to predict the origin of the unsampled seamounts in the chain. A second geophysical test of the origin hypothesis is to examine the degree of isostatic compensation of the guyots; seamounts formed near a ridge should be in a state of local isostatic compensation, while seamounts formed away from a ridge should be regionally compensated. This test has been carried out using GEOS 3 and SEASAT altimeter data. The effective flexural rigidity of the lithosphere below all seamounts is found to be less than about 1020 Nm, such that the isostatic state is nearly local, rather than regional. This may be a consequence of all the seamounts having formed on an initially weak lithosphere, of stress relaxation subsequant to their formation away from the ridge, or both. If the seamounts from Giacomini to Durgin formed away from the ridge then these results point to an effective flexural rigidity at the time of loading of about 3 × 1021 Nm and to a stress-relaxation time of about 106 years. These values are for an ocean lithosphere that was about 20–22 my old when loaded. Corresponding values for 60 my old lithosphere in the southern Pacific were previously found to be about 3 × 1022 Nm and 5 × 106 years. This comparison suggests that both the initial elastic response and the rate of stress relaxation are functions of the age of the lithosphere. The subsidence of guyots is due to numerous factors including thermal contraction of the seafloor, sediment loading, the flexure of the lithosphere prior to its subduction along the Aleutian Trench and, in view of the above short stress relaxation time, stress relaxation. A principal uncertainty in evaluating the subsidence that has occurred subsequent to the seamount having been eroded to sealevel is the erosion time interval. The comparison of the predicted subsidence with observed depths points to an erosion time constant of the order of 5 my and which is a function of seamount size. The conclusions from the flexure and subsidence analysis as to where the various seamounts formed are in agreement with those of Turner et al. Giacomini, Quinn, Surveyor, Pratt and Durgin formed away from a ridge and are consistent with a fixed hotspot and uniform spreading rate model. The geophysical information for Denson, Davidson and Hodgkins is consistent with the hypothesis that these guyots formed near or on a ridge. The case for Welker seamount is ambiguous, and this guyot may have formed over a second hotspot, located at an intermediate distance between the first and the ridge. The geophysical evidence for Bowie seamount is also ambiguous. Possibly it has a similar source to Welker, suggesting that there may actually be three different origin mechanisms that led to the chain.  相似文献   
322.
323.
324.
Grain boundary processes contribute significantly to electronic and ionic transports in materials within Earth’s interior. We report a novel experimental study of grain boundary conductivity in highly strained olivine aggregates that demonstrates the importance of misorientation angle between adjacent grains on aggregate transport properties. We performed electrical conductivity measurements of melt-free polycrystalline olivine (Fo90) samples that had been previously deformed at 1200 °C and 0.3 GPa to shear strains up to γ?=?7.3. The electrical conductivity and anisotropy were measured at 2.8 GPa over the temperature range 700–1400 °C. We observed that (1) the electrical conductivity of samples with a small grain size (3–6 µm) and strong crystallographic preferred orientation produced by dynamic recrystallization during large-strain shear deformation is a factor of 10 or more larger than that measured on coarse-grained samples, (2) the sample deformed to the highest strain is the most conductive even though it does not have the smallest grain size, and (3) conductivity is up to a factor of ~?4 larger in the direction of shear than normal to the shear plane. Based on these results combined with electrical conductivity data for coarse-grained, polycrystalline olivine and for single crystals, we propose that the electrical conductivity of our fine-grained samples is dominated by grain boundary paths. In addition, the electrical anisotropy results from preferential alignment of higher-conductivity grain boundaries associated with the development of a strong crystallographic preferred orientation of the grains.  相似文献   
325.
The Tanami region of northern Australia has emerged over the last two decades as the largest gold-producing region in the Northern Territory. Gold is hosted by epigenetic quartz veins in sedimentary and mafic rocks, and by sulfide-rich replacement zones within iron formation. Although limited, geochronological data suggest that most mineralization occurred at about 1,805–1,790 Ma, during a period of extensive granite intrusion, although structural relationships suggest that some deposits predate this period. There are three main goldfields in the Tanami region: the Dead Bullock Soak goldfield, which hosts the world-class Callie deposit; The Granites goldfield; and the Tanami goldfield. In the Dead Bullock Soak goldfield, deposits are hosted by carbonaceous siltstone and iron formation where a late (D5) structural corridor intersects an early F1 anticlinorium. In The Granites goldfield, deposits are hosted by highly sheared iron formation and are interpreted to predate D5. The Tanami goldfield consists of a large number of small, mostly basalt-hosted deposits that probably formed at a high structural level during D5. The D5 structures that host most deposits formed in a convergent structural regime with σ 1 oriented between E–W and ENE–WSW. Structures active during D5 include NE-trending oblique thrust (dextral) faults and ESE-trending (sinistral) faults that curve into N- to NNW-trending reverse faults localized in supracrustal belts between and around granite complexes. Granite intrusions also locally perturbed the stress field, possibly localizing structures and deposits. Forward modeling and preliminary interpretations of reflection seismic data indicate that all faults extend into the mid-crust. In areas characterized by the N- to NW-trending faults, orebodies also tend to be N- to NW-trending, localized in dilational jogs or in fractured, competent rock units. In areas characterized by ESE-trending faults, the orebodies and veins tend to strike broadly east at an angle consistent with tensional fractures opened during E–W- to ENE–WSW-directed transpression. Many of these deposits are hosted by reactive rock units such as carbonaceous siltstone and iron formation. Ore deposition occurred at depths ranging from 1.5 to 11 km from generally low to moderate salinity carbonic fluids with temperatures from 200 to 430°C, similar to lode–gold fluids elsewhere in the world. These fluids are interpreted as the product of metamorphic dewatering caused by enhanced heat flow, although it is also possible that the fluids were derived from coeval granites. Lead isotope data suggest that lead in the ore fluids had multiple sources. Hydrogen and oxygen isotope data are consistent with both metamorphic and magmatic origins for ore fluids. Gold deposition is interpreted to be caused by fluid unmixing and sulfidation of host rocks. Fluid unmixing is caused by three different processes: (1) CO2 unmixing caused by interaction of ore fluids with carbonaceous siltstone; (2) depressurization caused by pressure cycling in shear zones; and (3) boiling as ore fluids move to shallow levels. Deposits in the Tanami region may illustrate the continuum model of lode–gold deposition suggested by Groves (Mineralium Deposita 28:366–374, 1993) for Archean districts.  相似文献   
326.
We have established a plausible rate of uplift near Siracusa in southeastern Sicily (Italy) over the last glacial–interglacial cycle using U-series ages of submerged speleothem calcite and 14C ages of calcite serpulid layers that encrust the speleothems during cave submergence. The precisely determined ages of these sea level benchmarks were compared with expected relative sea level position based on glacio-hydro-isostatic modeling to assess the rate of uplift in this region. When combined with the age of various late Holocene archaeological sites that have been recently described and characterized in terms of their functional position relative to sea level these data collectively define a rate of uplift ≤0.4 mm a?1 along this portion of the Sicilian coastline. These results are consistent with an age assignment of marine isotope stage (MIS) 5.3 or 5.5 for the Akradina terrace, which in turn places temporal constraints on paleoshorelines above and below this level.  相似文献   
327.
The hydrogeomorphology and ecology of rivers and streams has been subject of intensive research for many decades. However, hydraulically-generated acoustics have been mostly neglected, even though this physical attribute is a robust signal in fluvial ecosystems. Physical generated underwater sound can be used to quantify hydro-geomorphic processes, to differentiate among aquatic habitat types, and it has implications on the behavior of organisms. In this study, acoustic signals were quantified in a flume by varying hydro-geomorphic drivers and the related turbulence and bubble formation. The acoustic signals were recorded using two hydrophones and analyzed using a signal processing software, over 31 third-octave bands (20 Hz–20 kHz), and then combined in 10 octave bands. The analytical method allowed for a major improvement of the signal-to-noise ratio, therefore greatly reducing the uncertainty in our analyses. Water velocity, relative submergence, and flow obstructions were manipulated in the flume and the resultant acoustic signals recorded. Increasing relative submergence ratio and water velocity were important for reaching a turbulence threshold above which distinct sound levels were generated. Increases in water velocity resulted in increased sound levels over a wide range of frequencies. The increases in sound levels due to relative submergence of obstacles were most pronounced in midrange frequencies (125 Hz–2 kHz). Flow obstructions in running waters created turbulence and air bubble formation, which again produced specific sound signatures.  相似文献   
328.
329.
Stress proteins (heat shock proteins, hsps) form part of the cellular protein repair system, and are induced by a wide variety of Stressors. To determine their suitability as tools for assessing sublethal sediment toxicity, we measured levels of members of the stress protein families hsp60 and hsp70 in benthic estuarine amphipods (Ampelisca abdita) exposed to sediments from 23 different sampling sites in San Francisco Bay for 10 d. Concentrations of sediment-associated xenobiotics were determined. Per cent survival was recorded and surviving animals were analysed for stress proteins using western blotting techniques. An inverse correlation (r2 = 0.44) was seen between amphipod survival and hsp64 levels, and hsp64 levels were positively correlated with concentrations of total polycyclic aromatic hydrocarbons (PAHs) (r2 = 0.5). Principal component analysis revealed that amphipod mortality was linked to a combination of several PAHs (phenanthrene, fluoranthene, pyrene, benzo(a)pyrene) and di-n-butylphthalate at southern San Francisco Bay sites. At northern San Francisco Bay sites, negative correlations were found between hsp64 levels and organotin compounds (MBT, DBT, TBT), and between hsp71 levels and the PAHs, benzo (b,k)fluoranthene and benzo(G,H,I)perylene, suggesting an inhibitory effect of these compounds on stress protein expression.  相似文献   
330.
The availability of high‐resolution, multi‐temporal, remotely sensed topographic data is revolutionizing geomorphic analysis. Three‐dimensional topographic point measurements acquired from structure‐from‐motion (SfM) photogrammetry have been shown to be highly accurate and cost‐effective compared to laser‐based alternatives in some environments. Use of consumer‐grade digital cameras to generate terrain models and derivatives is becoming prevalent within the geomorphic community despite the details of these instruments being largely overlooked in current SfM literature. A practical discussion of camera system selection, configuration, and image acquisition is presented. The hypothesis that optimizing source imagery can increase digital terrain model (DTM) accuracy is tested by evaluating accuracies of four SfM datasets conducted over multiple years of a gravel bed river floodplain using independent ground check points with the purpose of comparing morphological sediment budgets computed from SfM‐ and LiDAR‐derived DTMs. Case study results are compared to existing SfM validation studies in an attempt to deconstruct the principle components of an SfM error budget. Greater information capacity of source imagery was found to increase pixel matching quality, which produced eight times greater point density and six times greater accuracy. When propagated through volumetric change analysis, individual DTM accuracy (6–37 cm) was sufficient to detect moderate geomorphic change (order 100 000 m3) on an unvegetated fluvial surface; change detection determined from repeat LiDAR and SfM surveys differed by about 10%. Simple camera selection criteria increased accuracy by 64%; configuration settings or image post‐processing techniques increased point density by 5–25% and decreased processing time by 10–30%. Regression analysis of 67 reviewed datasets revealed that the best explanatory variable to predict accuracy of SfM data is photographic scale. Despite the prevalent use of object distance ratios to describe scale, nominal ground sample distance is shown to be a superior metric, explaining 68% of the variability in mean absolute vertical error. Published 2016. This article is a U.S. Government work and is in the public domain in the USA  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号