首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   12篇
  国内免费   2篇
测绘学   30篇
大气科学   16篇
地球物理   51篇
地质学   36篇
海洋学   5篇
天文学   43篇
综合类   2篇
自然地理   11篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   7篇
  2018年   8篇
  2017年   14篇
  2016年   15篇
  2015年   16篇
  2014年   8篇
  2013年   18篇
  2012年   9篇
  2011年   2篇
  2010年   6篇
  2009年   8篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   6篇
  2002年   4篇
  2000年   5篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1996年   4篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1991年   8篇
  1990年   4篇
  1989年   2篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1970年   1篇
排序方式: 共有194条查询结果,搜索用时 93 毫秒
151.
Kustaanheimo–Stiefel (KS) transformation depends on the choice of some preferred direction in the Cartesian 3D space. This choice, seldom explicitly mentioned, amounts typically to the direction of the first or the third coordinate axis in Celestial Mechanics and atomic physics, respectively. The present work develops a canonical KS transformation with an arbitrary preferred direction, indicated by what we call a defining vector. Using a mix of vector and quaternion algebra, we formulate the transformation in a reference frame independent manner. The link between the oscillator and Keplerian first integrals is given. As an example of the present formulation, the Keplerian motion in a rotating frame is re-investigated.  相似文献   
152.
Traffic forecasting is a challenging problem due to the complexity of jointly modeling spatio‐temporal dependencies at different scales. Recently, several hybrid deep learning models have been developed to capture such dependencies. These approaches typically utilize convolutional neural networks or graph neural networks (GNNs) to model spatial dependency and leverage recurrent neural networks (RNNs) to learn temporal dependency. However, RNNs are only able to capture sequential information in the time series, while being incapable of modeling their periodicity (e.g., weekly patterns). Moreover, RNNs are difficult to parallelize, making training and prediction less efficient. In this work we propose a novel deep learning architecture called Traffic Transformer to capture the continuity and periodicity of time series and to model spatial dependency. Our work takes inspiration from Google’s Transformer framework for machine translation. We conduct extensive experiments on two real‐world traffic data sets, and the results demonstrate that our model outperforms baseline models by a substantial margin.  相似文献   
153.
Deeply integrating Linked Data with Geographic Information Systems   总被引:1,自引:0,他引:1  
The realization that knowledge often forms a densely interconnected graph has fueled the development of graph databases, Web‐scale knowledge graphs and query languages for them, novel visualization and query paradigms, as well as new machine learning methods tailored to graphs as data structures. One such example is the densely connected and global Linked Data cloud that contains billions of statements about numerous domains, including life science and geography. While Linked Data has found its way into everyday applications such as search engines and question answering systems, there is a growing disconnect between the classical ways in which Geographic Information Systems (GIS) are still used today and the open‐ended, exploratory approaches used to retrieve and consume data from knowledge graphs such as Linked Data. In this work, we conceptualize and prototypically implement a Linked Data connector framework as a set of toolboxes for Esri's ArcGIS to close this gap and enable the retrieval, integration, and analysis of Linked Data from within GIS. We discuss how to connect to Linked Data endpoints, how to use ontologies to probe data and derive appropriate GIS representations on the fly, how to make use of reasoning, how to derive data that are ready for spatial analysis out of RDF triples, and, most importantly, how to utilize the link structure of Linked Data to enable analysis. The proposed Linked Data connector framework can also be regarded as the first step toward a guided geographic question answering system over geographic knowledge graphs.  相似文献   
154.
Geographic entities and the information associated with them play a major role in Web‐scale knowledge graphs such as Linked Data. Interestingly, almost all major datasets represent places and even entire regions as point coordinates. There are two key reasons for this. First, complex geometries are difficult to store and query using the current Linked Data technology stack to a degree where many queries take minutes to return or will simply time out. Second, the absence of complex geometries confirms a common suspicion among GIScientists, namely that for many everyday queries place‐based relational knowledge is more relevant than raw geometries alone. To give an illustrative example, the statement that the White House is in Washington, DC is more important for gaining an understating of the city than the exact geometries of both entities. This does not imply that complex geometries are unimportant but that (topological) relations should also be extracted from them. As Egenhofer and Mark (1995b) put it in their landmark paper on naive geography, topology matters, metric refines. In this work we demonstrate how to compute and utilize strict, approximate, and metrically refined topological relations between several geographic feature types in DBpedia and compare our results to approaches that compute result sets for topological queries on the fly.  相似文献   
155.
Waldo Tobler frequently reminded us that the law named after him was nothing more than calling for exceptions. This article discusses one of these exceptions. Spatial relations between points are frequently modeled as vectors in which both distance and direction are of equal prominence. However, in Tobler's first law of geography, such a relation is described only from the perspective of distance by relating the decreasing similarity of observations in some attribute space to their increasing distance in geographic space. Although anisotropic versions of many geographic analysis techniques, such as directional semivariograms, anisotropy clustering, and anisotropic point pattern analysis, have been developed over the years, direction remains on the level of an afterthought. We argue that, compared to distance, directional information is still under‐explored and anisotropic techniques are substantially less frequently applied in everyday GIS analysis. Commonly, when classical spatial autocorrelation indicators, such as Moran's I, are used to understand a spatial pattern, the weight matrix is only built from distance, without direction being considered. Similarly, GIS operations, such as buffering, do not take direction into account either, with distance in all directions being treated equally. In reality, meanwhile, particularly in urban structures and when processes are driven by the underlying physical geography, direction plays an essential role. In this article we ask whether the development of early GIS, data (sample) sparsity, and Tobler's law lead to a theory‐induced blindness for the role of direction. If so, is it possible to envision direction becoming a first‐class citizen of equal importance to distance instead of being an afterthought only considered when the deviation from a perfect circle becomes too obvious to be ignored?  相似文献   
156.
Compact object mergers are one of the currently favoured models for the origin of gamma-ray bursts (GRBs). The discovery of optical afterglows and identification of the nearest, presumably host, galaxies allow the analysis of the distribution of burst sites with respect to these galaxies. Using a model of stellar binary evolution we synthesize a population of compact binary systems which merge within the Hubble time. We include the kicks in the supernovae explosions and calculate orbits of these binaries in galactic gravitational potentials. We present the resulting distribution of merger sites and discuss the results in the framework of the observed GRB afterglows.  相似文献   
157.
Observations of the solar photosphere from the ground encounter significant problems caused by Earth’s turbulent atmosphere. Before image reconstruction techniques can be applied, the frames obtained in the most favorable atmospheric conditions (the so-called lucky frames) have to be carefully selected. However, estimating the quality of images containing complex photospheric structures is not a trivial task, and the standard routines applied in nighttime lucky imaging observations are not applicable. In this paper we evaluate 36 methods dedicated to the assessment of image quality, which were presented in the literature over the past 40 years. We compare their effectiveness on simulated solar observations of both active regions and granulation patches, using reference data obtained by the Solar Optical Telescope on the Hinode satellite. To create images that are affected by a known degree of atmospheric degradation, we employed the random wave vector method, which faithfully models all the seeing characteristics. The results provide useful information about the method performances, depending on the average seeing conditions expressed by the ratio of the telescope’s aperture to the Fried parameter, \(D/r_{0}\). The comparison identifies three methods for consideration by observers: Helmli and Scherer’s mean, the median filter gradient similarity, and the discrete cosine transform energy ratio. While the first method requires less computational effort and can be used effectively in virtually any atmospheric conditions, the second method shows its superiority at good seeing (\(D/r_{0}<4\)). The third method should mainly be considered for the post-processing of strongly blurred images.  相似文献   
158.
Water Resources - The objective of this paper is the assessment of the effect of a multifunctional mid-size retention reservoir on the occurrence of floods and low flows. The study object was...  相似文献   
159.
Learning knowledge graph (KG) embeddings is an emerging technique for a variety of downstream tasks such as summarization, link prediction, information retrieval, and question answering. However, most existing KG embedding models neglect space and, therefore, do not perform well when applied to (geo)spatial data and tasks. Most models that do consider space primarily rely on some notions of distance. These models suffer from higher computational complexity during training while still losing information beyond the relative distance between entities. In this work, we propose a location‐aware KG embedding model called SE‐KGE. It directly encodes spatial information such as point coordinates or bounding boxes of geographic entities into the KG embedding space. The resulting model is capable of handling different types of spatial reasoning. We also construct a geographic knowledge graph as well as a set of geographic query–answer pairs called DBGeo to evaluate the performance of SE‐KGE in comparison to multiple baselines. Evaluation results show that SE‐KGE outperforms these baselines on the DBGeo data set for the geographic logic query answering task. This demonstrates the effectiveness of our spatially‐explicit model and the importance of considering the scale of different geographic entities. Finally, we introduce a novel downstream task called spatial semantic lifting which links an arbitrary location in the study area to entities in the KG via some relations. Evaluation on DBGeo shows that our model outperforms the baseline by a substantial margin.  相似文献   
160.
Web‐scale knowledge graphs such as the global Linked Data cloud consist of billions of individual statements about millions of entities. In recent years, this has fueled the interest in knowledge graph summarization techniques that compute representative subgraphs for a given collection of nodes. In addition, many of the most densely connected entities in knowledge graphs are places and regions, often characterized by thousands of incoming and outgoing relationships to other places, actors, events, and objects. In this article, we propose a novel summarization method that incorporates spatially explicit components into a reinforcement learning framework in order to help summarize geographic knowledge graphs, a topic that has not been considered in previous work. Our model considers the intrinsic graph structure as well as the extrinsic information to gain a more comprehensive and holistic view of the summarization task. By collecting a standard data set and evaluating our proposed models, we demonstrate that the spatially explicit model yields better results than non‐spatial models, thereby demonstrating that spatial is indeed special as far as summarization is concerned.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号