首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
地质学   43篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2014年   2篇
  2013年   6篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2009年   6篇
  2008年   2篇
  2007年   2篇
  2006年   6篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
21.
22.
Lithogeochemical features of Riphean fine-grained terrigenous rocks of the Kama-Belaya aulacogen are discussed. It is shown that aluminosiliciclastic material delivered to the aulacogen during the Riphean was characterized by a low maturity degree. The successively increasing K2O/Al2O3 values in the Riphean summary section correlate negatively with the CIA index values, indicating a gradually strengthening tendency for climate aridization in erosion zones. Data on some indicator ratios of trace elements and REE systematics in Riphean silty mudstones and shales of the Kama-Belaya aulacogen imply the involvement of mafic and ultramafic rocks, in addition to acid igneous and metamorphic varieties, in erosion during accumulation of the Nadezhdino, Tukaevo, Ol’khovka, Usinsk, and Priyutovo formations. Comparison of data on the composition of rocks in provenances based on the mineralogical-petrographic study of sandstones and investigation of geochemical features of silty mudstones and shales revealed their sufficiently high similarity. The geochemical data made it possible to specify the composition of rocks in provenances. Low Ce/Cr values in the fine-grained terrigenous rocks of the Lower Riphean Kyrpy Group suggest their formation with a significant contribution of erosion products of the Archean substrate, which is atypical for higher levels of the section. Thus, the Early-Middle Riphean transition period was likely marked by substantial changes in the mineral composition of material delivered to the Kama-Belaya aulacogen. The lack of exhalative components in the examined specimens of silty mudstones and shales points to a relatively low permeability of the Earth’s crust in the eastern East European Platform through the entire Riphean.  相似文献   
23.
24.
25.
World-class deposits of magnesite and siderite occur in Riphean strata of the Southern Urals, Russia. Field evidence, inclusion fluid chemistry, and stable isotope data presented in this study clearly proof that the replacement and precipitation processes leading to the formation of the epigenetic dolomite, magnesite and hydrothermal siderite were genetically related to evaporitic fluids affecting already lithified rocks. There is, however, a systematic succession of events leading to the formation of magnesite in a first stage. After burial and diagenesis the same brines were modified to hot and reducing hydrothermal fluids and were the source for the formation of hydrothermal siderite. The magnesites of the Satka Formation as well as the magnesites and the siderites of the Bakal Formation exhibit low Na/Br (106 to 222) and Cl/Br (162 to 280) ratios plotting on the seawater evaporation trend, indicating that the fluids acquired their salinity by evaporation processes of seawater. Temperature calculations based on cation exchange thermometers indicate a formation temperature of the magnesites of?~?130 °C. Considering the fractionation at this temperature stable isotope evidence shows that the magnesite forming brines had δ18OSMOW values of?~?+1 ‰ thus indicating a seawater origin of the original fluid. Furthermore it proves that these fluids were not yet affected by appreciable fluid-rock interaction, which again implies magnesite formation in relatively high crustal levels. In contrast to the magnesites, the siderite mineralization was caused by hydrothermal fluids that underwent more intense reactions with their host rocks in deeper crustal levels compared to the magnesite. The values of 87Sr /86Sr in the siderites are substantially higher compared to the host rock slates. They also exceed the 87Sr /86Sr ratios of the magnesites and the host rock limestones indicating these slates as the source of iron as a consequence of water-rock interaction. The siderites were formed at temperatures of?~?250 °C indicating a relatively heavy fluid in equilibrium with siderite of 13 ‰ δ18OSMOW, which is in the range of diagenetic/metamorphic fluids and reflects the?±?complete equilibration with the host rocks. Carbon isotope evidence shows that the fluid forming the siderites underwent a much higher interaction with the host rocks resulting in a lowering of the δ13C numbers (?3,3 to ?3,7 ‰). The light carbon was most probably derived from decaying hydrocarbons in the Riphean sediments. In a very early stage after sedimentation of the Satka Formation (~1,550 Ma) magnesite was formed by seepage reflux of evaporitic bittern brines at the stage of riftogenic activity in the region (1,380–1,350 Ma). Sedimentation of the Bakal Formation (~1,430 Ma) and intrusion of diabase dykes (1,386?±?1,4 Ma) followed. Diagenetic/epigenetic mobilization of these buried fluids at?~?1,100 Ma resulted in the formation of hydrothermal siderite bodies.  相似文献   
26.
27.
For the first time, the age of magnesite in the Lower Riphean Bakal Formation of the Southern Urals is determined by the U—Pb (Pb—Pb) method: it is equal to 1366 ± 47 Ma (MSWD = 18). The stage of magnesite formation of the Bakal ore field was associated with the Mashak rifting pulse and took place prior to the formation of industrial deposits of the Bakal siderite.  相似文献   
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号