首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   6篇
测绘学   1篇
大气科学   14篇
地球物理   20篇
地质学   45篇
海洋学   14篇
天文学   12篇
自然地理   8篇
  2022年   2篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2016年   9篇
  2015年   4篇
  2014年   6篇
  2013年   5篇
  2012年   5篇
  2011年   2篇
  2010年   10篇
  2009年   3篇
  2008年   5篇
  2007年   7篇
  2006年   4篇
  2004年   5篇
  2003年   7篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有114条查询结果,搜索用时 15 毫秒
21.
Dissolved gaseous mercury (DGM) was measured continuously using two newly developed techniques and a manual technique. The continuous techniques were based on the equilibrium between the aqueous and gaseous phase (DGM = Hgextr / H', Hgextr is the measured mercury concentration in the gas phase, H' is the Henry's Law coefficient at the desired temperature). In order to calculate the annual mercury evasion from the Mediterranean Sea, diurnal and seasonal measurements of DGM, total gaseous mercury in air (TGM), water temperature and wind speed were performed. During August 2003, March–April 2004 and October–November 2004 measurements of these parameters were conducted on board the RV Urania. The continuous measurements of DGM showed a diurnal variation in concentration, at both coastal and off shore sites, with higher concentrations during daytime than nighttime. The concentration difference could be as large as 130 fM between day and night. The degree of saturation was calculated directly from the measurements, S = Hgextr / TGM and was found to vary between the different seasons. The highest average degree of saturation (850%) and the largest variation in saturation (600–1150%) was observed during the summer. The spring showed the lowest variation (260–360%) and the lowest average degree of saturation (320%). The autumn also showed a large variation in saturation (500–1070%) but a lower average (740%) compared to the summer cruise. This might be explained by the temperature difference between the different seasons, since that parameter varied the most. The flux from the sea surface was calculated using the gas exchange model developed by Nightingale et al. [Nightingale, P.D., Malin, G., Law, C.S., Watson, A.J., Liss, P.S., Liddicoat, M.I., Boutin, J., Upstill-Goddard, R. C., 2000. In situ evaluation of air–sea gas exchange parameterization using novel conservative and volatile tracers. Global Biogeochemical Cycles, 14(1):373–387]. The evasion varied between the different seasons with the highest evasion during the autumn, 24.6 pmol m− 2 h− 1. The summer value was estimated to 22.3 pmol m− 2 h− 1 and the spring to 7.6 pmol m− 2 h− 1. Using this data the yearly evasion from the Mediterranean Sea surface was estimated to 77 tons.  相似文献   
22.
Airborne laser altimetry survey of Glaciar Tyndall, Patagonia   总被引:1,自引:1,他引:0  
The first airborne laser altimetry measurements of a glacier in South America are presented. Data were collected in November of 2001 over Glaciar Tyndall, Torres del Paine National Park, Chilean Patagonia, onboard a Twin Otter airplane of the Chilean Air Force. A laser scanner with a rotating polygon-mirror system together with an Inertial Navigation System (INS) were fixed to the floor of the aircraft, and used in combination with two dual-frequency GPS receivers. Together, the laser–INS–GPS system had a nominal accuracy of 30 cm after data processing. On November 23rd, a total of 235 km were flown over the ablation area of Glaciar Tyndall, with 5 longitudinal tracks with a mean swath width of 300 m, which results in a point spacing of approximately 2 m both along and across track. A digital elevation model (DEM) generated using the laser altimetry data was compared with a DEM produced from a 1975 map (1:50,000 scale — Instituto Geográfico Militar (IGM), Chile). A mean thinning of − 3.1 ± 1.0 m a− 1 was calculated for the ablation area of Glaciar Tyndall, with a maximum value of − 7.7 ± 1.0 m a− 1 at the calving front at 50 m a.s.l. and minimum values of between − 1.0 and − 2.0 ± 1.0 m a− 1 at altitudes close to the equilibrium line altitude (900 m a.s.l.). The thinning rates derived from the airborne survey were similar to the results obtained by means of ground survey carried out at  600 m of altitude on Glaciar Tyndall between 1975 and 2002, yielding a mean thinning of − 3.2 m a− 1 [Raymond, C., Neumann, T.A., Rignot, E., Echelmeyer, K.A., Rivera, A., Casassa, G., 2005. Retreat of Tyndall Glacier, Patagonia, over the last half century. Journal of Glaciology 173 (51), 239–247.]. A good agreement was also found between ice elevation changes measured with laser data and previous results obtained with Shuttle Radar Topography Mission (SRTM) data. We conclude that airborne laser altimetry is an effective means for accurately detecting glacier elevation changes in Patagonia, where an ice thinning acceleration trend has been observed during recent years, presumably in response to warming and possibly also drier conditions.  相似文献   
23.
24.
Climate strongly affects energy supply and demand in the Pacific Northwest (PNW) and Washington State (WA). We evaluate potential effects of climate change on the seasonality and annual amount of PNW hydropower production, and on heating and cooling energy demand. Changes in hydropower production are estimated by linking simulated streamflow scenarios produced by a hydrology model to a simulation model of the Columbia River hydro system. Changes in energy demand are assessed using gridded estimates of heating degree days (HDD) and cooling degree days (CDD) which are then combined with population projections to create energy demand indices that respond both to climate, future population, and changes in residential air conditioning market penetration. We find that substantial changes in the amount and seasonality of energy supply and demand in the PNW are likely to occur over the next century in response to warming, precipitation changes, and population growth. By the 2040s hydropower production is projected to increase by 4.7–5.0% in winter, decrease by about 12.1–15.4% in summer, with annual reductions of 2.0–3.4%. Larger decreases of 17.1–20.8% in summer hydropower production are projected for the 2080s. Although the combined effects of population growth and warming are projected to increase heating energy demand overall (22–23% for the 2020s, 35–42% for the 2040s, and 56–74% for the 2080s), warming results in reduced per capita heating demand. Residential cooling energy demand (currently less than one percent of residential demand) increases rapidly (both overall and per capita) to 4.8–9.1% of the total demand by the 2080s due to increasing population, cooling degree days, and air conditioning penetration.  相似文献   
25.
The capture and storage of CO2 from combustion of fossil fuels is gaining attraction as a means to deal with climate change. CO2 emissions from biomass conversion processes can also be captured. If that is done, biomass energy with CO2 capture and storage (BECS) would become a technology that removes CO2 from the atmosphere and at the same time deliver CO2-neutral energy carriers (heat, electricity or hydrogen) to society. Here we present estimates of the costs and conversion efficiency of electricity, hydrogen and heat generation from fossil fuels and biomass with CO2 capture and storage. We then insert these technology characteristics into a global energy and transportation model (GET 5.0), and calculate costs of stabilizing atmospheric CO2 concentration at 350 and 450 ppm. We find that carbon capture and storage technologies applied to fossil fuels have the potential to reduce the cost of meeting the 350 ppm stabilisation targets by 50% compared to a case where these technologies are not available and by 80% when BECS is allowed. For the 450 ppm scenario, the reduction in costs is 40 and 42%, respectively. Thus, the difference in costs between cases where BECS technologies are allowed and where they are not is marginal for the 450 ppm stabilization target. It is for very low stabilization targets that negative emissions become warranted, and this makes BECS more valuable than in cases with higher stabilization targets. Systematic and stochastic sensitivity analysis is performed. Finally, BECS opens up the possibility to remove CO2 from the atmosphere. But this option should not be seen as an argument in favour of doing nothing about the climate problem now and then switching on this technology if climate change turns out to be a significant problem. It is not likely that BECS can be initiated sufficiently rapidly at a sufficient scale to follow this path to avoiding abrupt and serious climate changes if that would happen.  相似文献   
26.
The exchanges of mercury between surface and air are of significance in the biogeochemical cycling of Hg in the environment, but there are still few reliable data on air/surface exchange in aquatic systems. Field measurement campaigns over seawater surface at Kristineberg Marine Research Station (KMRS) and over Hovg?rds?n River surface at Knobesholm in southwestern Sweden were conducted to measure mercury flux using a dynamic flux chamber technique coupled with automatic mercury vapor-phase analyzers. Both sites show net emissions during summer time. Mercury fluxes measured over both river and seawater surfaces exhibit a consistently diurnal pattern with maximum fluxes during the daytime period and minimum fluxes during the nighttime period. At freshwater site, mercury flux is strongly correlated with the intensity of net solar radiation, and negatively correlated with relative humidity. A typical exponential relationship between mercury flux and water temperature was observed at freshwater measurement site. At seawater site, a strong correlation between mercury flux and intensity of solar radiation was obtained. The driving force of mercury emission from water surface to air is the super-saturation of dissolved gaseous mercury in aqueous phase.  相似文献   
27.
A two-dimensional fracture model based on micro-fracture mechanics is applied to the Hertzian indentation stress field to simulate subsurface fractures in an axi-symmetrical plane. The simulation of fracture development reveals quantitatively the effects of loading force, mechanical properties of the rocks, and original micro cracks on the formation of subsurface fractures. The distribution patterns of the subsurface fractures are determined by the magnitudes and trajectories of the indentation stresses. Lateral confinement prohibits the fracture development. Simulations of the subsurface fractures in granite and marble are in good agreement with the indentation experiments. © 1997 by John Wiley & Sons, Ltd.  相似文献   
28.
The objective of this study was to determine and discuss field‐scale phosphorus losses via subsurface tile drains. A total phosphorous (Tot‐P) export, which averaged 0·29 kg ha−1 year−1, was measured over a six‐year period from the 4·43 ha drainage system of a Eutric Cambisol in Central Sweden. The main part (63%) was in particulate form (PP) while the remainder was either in phosphate form (PO4‐P) or in other dissolved or colloidal forms. A very small area, less than 1% of the soil surface, was demonstrated to be hydraulically active by using a staining technique in soil monoliths taken from the field. The stained macropores were few, but were continuous downward, and were relatively evenly distributed among the eight 7 dm2 areas that were investigated. The transport from the field mainly occurred in episodes during which the relationship between phosphorus concentration and discharge was characterized by hysteresis loops. On average, half of the yearly P transport occurred in 140 hours. Compared with flow‐proportional and frequent sampling, manual and fortnightly sampling underestimated the transport of Tot‐P and suspended solids (SS) by 59 and 42%, respectively, during the six years studied. Amounts of different phosphorus forms exported through the tile drains were very similar to those reported from other clay soils in Northern Europe and North America. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
29.
Mussel farming is considered a viable means for reducing coastal eutrophication. This study assessed the importance of bioturbation by recolonizing fauna for benthic solute fluxes and porewater distributions in manipulated mussel farm sediments. Three consecutive time-series flux incubations were performed during an experimental period of three weeks in sieved farm sediment treated with the brittle star Amphiura filiformis and the polychaete Nephtys sp. The functional behavior of Nephtys sp. and interactions between Nephtys sp. and the spontaneously colonizing spionid Malacoceros fuliginosus determined the biogeochemical response in the Nephtys sp. treatment. For example, the oxic zone was restricted and benthic nitrate and silicate fluxes were reduced compared to the brittle star treatment. A. filiformis seemed to enhance the bioadvective solute transport, although an increased supply of oxygen was due to the highly reducing conditions of the sediment mainly seen as secondary effects related to porewater distributions and benthic nutrient fluxes.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号