首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   5篇
测绘学   1篇
大气科学   13篇
地球物理   18篇
地质学   27篇
海洋学   10篇
天文学   9篇
自然地理   7篇
  2022年   2篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2016年   9篇
  2015年   4篇
  2014年   6篇
  2013年   5篇
  2012年   4篇
  2011年   2篇
  2010年   10篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   4篇
  2004年   3篇
  2003年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1988年   1篇
  1984年   1篇
  1982年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
81.
The marine benthic fauna and the δ18Oc of foraminifers and ostracods from six sites situated on a west–east transect through central Sweden have been analysed in order to estimate the palaeosalinity and palaeocirculation in this shallow‐marine environment. The measurements have been undertaken on material from the early Preboreal, when the Baltic Basin was in contact with the North Sea through straits in central Sweden. The δ18Oc values have a more negative value towards the east, indicating decreasing salinity. This was the result of limited possibilities for marine water to penetrate into the Baltic Basin and the mixing with freshwater from the melting Fennoscandian ice‐sheet. Four water masses existed in the area: a surface layer of freshwater, marine water from the North Sea, brackish–marine intermediate water on the Swedish west coast and brackish Yoldia Sea water in the Baltic Basin. The chronology is based on radiocarbon dates of marine fossils and, at one site, on the occurrence of the Vedde Ash (10 400–10 300 14C yr BP). This is the first record from marine settings in Sweden. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
82.
Inadequate knowledge exists on the distribution of soil moisture and shallow groundwater in intensively cultivated inland valley wetlands in tropical environments, which are required for determining the hydrological regime. This study investigated the spatial and temporal variability of soil moisture along 4 hydrological positions segmented as riparian zone, valley bottom, fringe, and valley slope in an agriculturally used inland valley wetland in Central Uganda. The determined hydrological regimes of the defined hydrological positions are based on soil moisture deficit calculated from the depth to the groundwater table. For that, the accuracy and reliability of satellite‐derived surface models, SRTM‐30m and TanDEM‐X‐12m, for mapping microscale topography and hydrological regimes are evaluated against a 5‐m digital elevation model (DEM) derived from field measurements. Soil moisture and depth to groundwater table were measured using frequency domain reflectometry sensors and piezometers installed along the hydrological positions, respectively. Results showed that spatial and temporal variability in soil moisture increased significantly (p < .05) towards the riparian zone; however, no significant difference was observed between the valley bottom and riparian zone. The distribution of soil hydrological regimes, saturated, near‐saturated, and nonsaturated regimes does not correlate with the hydrological positions. This is due to high spatial and temporal variability in depth to groundwater and soil moisture content across the valley. Precipitation strongly controlled the temporal variability, whereas microscale topography, soil properties, distance from the stream, anthropogenic factors, and land use controlled the spatial variability in the inland valley. TanDEM‐X DEM reasonably mapped the microscale topography and thus soil hydrological regimes relative to the Shuttle Radar Topography Mission DEM. The findings of the study contribute to improved understanding of the distribution of hydrological regimes in an inland valley wetland, which is required for a better agricultural water management planning.  相似文献   
83.
Geophysical surveying of the Arctic will become increasingly important in future prospecting and monitoring of the terrestrial and adjacent areas in this hemisphere. Seismic data acquired on floating ice are hampered with extensive noise due to ice vibrations related to highly dispersive ice flexural waves generated by the seismic source. Several experiments have been conducted on floating ice in van Mijenfjorden in Svalbard in the Norwegian Arctic to specifically analyse the extent of flexural waves recorded with various seismic receivers and sources deployed both on top of ice and in the water below. The data show that flexural waves are severely damped at 5 m or deeper below the ice and hydrophone data suffer less from these vibrations compared with data recorded on the ice. Aliasing of single receiver hydrophone data can to some extent be suppressed using an in-line line source of detonating cord. Experiments on ice on shallow water show prominent guided wave modes often referred to as Scholte waves propagating along the seabed. In this case, both flexural and Scholte waves interfere and make a complicated pattern of coherent noise. On shallow water, the positioning and type of the seismic source must be evaluated with respect to the coherent noise generated by these waves. Geophone strings of 25 m effectively suppress both flexural and Scholte waves due to their relative short wavelengths. An airgun generates relative more low-frequency energy than a surface source of detonating cord. Accordingly, seismic mapping of deep seismic horizons seem to be best achieved using geophone strings of such length and an airgun source. For shallow targets, the use of hydrophones in combination with detonating cord is an appropriate solution. Seismic surveying in the Arctic always have to follow environmental restrictions of not disturbing or harming wildlife and not causing permanent footprints into the vulnerable tundra, which implies that the choice of seismic acquisition strategy might occur as a trade-off between optimum data quality and environmental constraints.  相似文献   
84.
85.
Glaciers show a sensitive and rapid response to climate shifts. Associated changes in ice extent drive variations in the production of rock flour, the suspended product of glacial erosion. These glacigenic sediments may accumulate in downstream lakes, continuously recording glacier history. Consequently, the lacustrine sediment records of such glacier‐fed lakes represent valuable palaeoenvironmental archives that help constrain past climate variability. In this paper, we discuss the multi‐disciplinary methodological toolbox that is applied to fingerprint a glacier signal from such lake sediments. Special emphasis is placed on dating methods, which transform stratigraphical data into climate time series, allowing us to distinguish leads and lags between archives. We also elaborate on techniques that are used to validate sediment‐based glacier signals and resolve their climate signature. Finally, we conclude with a brief outlook on new research avenues such as proxy data–climate model comparisons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号