首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   5篇
测绘学   1篇
大气科学   13篇
地球物理   18篇
地质学   27篇
海洋学   10篇
天文学   9篇
自然地理   7篇
  2022年   2篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2016年   9篇
  2015年   4篇
  2014年   6篇
  2013年   5篇
  2012年   4篇
  2011年   2篇
  2010年   10篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   4篇
  2004年   3篇
  2003年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1988年   1篇
  1984年   1篇
  1982年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
21.
The objective of this study was to determine and discuss field‐scale phosphorus losses via subsurface tile drains. A total phosphorous (Tot‐P) export, which averaged 0·29 kg ha−1 year−1, was measured over a six‐year period from the 4·43 ha drainage system of a Eutric Cambisol in Central Sweden. The main part (63%) was in particulate form (PP) while the remainder was either in phosphate form (PO4‐P) or in other dissolved or colloidal forms. A very small area, less than 1% of the soil surface, was demonstrated to be hydraulically active by using a staining technique in soil monoliths taken from the field. The stained macropores were few, but were continuous downward, and were relatively evenly distributed among the eight 7 dm2 areas that were investigated. The transport from the field mainly occurred in episodes during which the relationship between phosphorus concentration and discharge was characterized by hysteresis loops. On average, half of the yearly P transport occurred in 140 hours. Compared with flow‐proportional and frequent sampling, manual and fortnightly sampling underestimated the transport of Tot‐P and suspended solids (SS) by 59 and 42%, respectively, during the six years studied. Amounts of different phosphorus forms exported through the tile drains were very similar to those reported from other clay soils in Northern Europe and North America. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
22.
Climate strongly affects energy supply and demand in the Pacific Northwest (PNW) and Washington State (WA). We evaluate potential effects of climate change on the seasonality and annual amount of PNW hydropower production, and on heating and cooling energy demand. Changes in hydropower production are estimated by linking simulated streamflow scenarios produced by a hydrology model to a simulation model of the Columbia River hydro system. Changes in energy demand are assessed using gridded estimates of heating degree days (HDD) and cooling degree days (CDD) which are then combined with population projections to create energy demand indices that respond both to climate, future population, and changes in residential air conditioning market penetration. We find that substantial changes in the amount and seasonality of energy supply and demand in the PNW are likely to occur over the next century in response to warming, precipitation changes, and population growth. By the 2040s hydropower production is projected to increase by 4.7–5.0% in winter, decrease by about 12.1–15.4% in summer, with annual reductions of 2.0–3.4%. Larger decreases of 17.1–20.8% in summer hydropower production are projected for the 2080s. Although the combined effects of population growth and warming are projected to increase heating energy demand overall (22–23% for the 2020s, 35–42% for the 2040s, and 56–74% for the 2080s), warming results in reduced per capita heating demand. Residential cooling energy demand (currently less than one percent of residential demand) increases rapidly (both overall and per capita) to 4.8–9.1% of the total demand by the 2080s due to increasing population, cooling degree days, and air conditioning penetration.  相似文献   
23.
The capture and storage of CO2 from combustion of fossil fuels is gaining attraction as a means to deal with climate change. CO2 emissions from biomass conversion processes can also be captured. If that is done, biomass energy with CO2 capture and storage (BECS) would become a technology that removes CO2 from the atmosphere and at the same time deliver CO2-neutral energy carriers (heat, electricity or hydrogen) to society. Here we present estimates of the costs and conversion efficiency of electricity, hydrogen and heat generation from fossil fuels and biomass with CO2 capture and storage. We then insert these technology characteristics into a global energy and transportation model (GET 5.0), and calculate costs of stabilizing atmospheric CO2 concentration at 350 and 450 ppm. We find that carbon capture and storage technologies applied to fossil fuels have the potential to reduce the cost of meeting the 350 ppm stabilisation targets by 50% compared to a case where these technologies are not available and by 80% when BECS is allowed. For the 450 ppm scenario, the reduction in costs is 40 and 42%, respectively. Thus, the difference in costs between cases where BECS technologies are allowed and where they are not is marginal for the 450 ppm stabilization target. It is for very low stabilization targets that negative emissions become warranted, and this makes BECS more valuable than in cases with higher stabilization targets. Systematic and stochastic sensitivity analysis is performed. Finally, BECS opens up the possibility to remove CO2 from the atmosphere. But this option should not be seen as an argument in favour of doing nothing about the climate problem now and then switching on this technology if climate change turns out to be a significant problem. It is not likely that BECS can be initiated sufficiently rapidly at a sufficient scale to follow this path to avoiding abrupt and serious climate changes if that would happen.  相似文献   
24.
25.
26.
27.
28.
29.
We describe a new method for numerical integration, dubbed bandlimited collocation implicit Runge–Kutta (BLC-IRK), and compare its efficiency in propagating orbits to existing techniques commonly used in Astrodynamics. The BLC-IRK scheme uses generalized Gaussian quadratures for bandlimited functions. This new method allows us to use significantly fewer force function evaluations than explicit Runge–Kutta schemes. In particular, we use a low-fidelity force model for most of the iterations, thus minimizing the number of high-fidelity force model evaluations. We also investigate the dense output capability of the new scheme, quantifying its accuracy for Earth orbits. We demonstrate that this numerical integration technique is faster than explicit methods of Dormand and Prince 5(4) and 8(7), Runge–Kutta–Fehlberg 7(8), and approaches the efficiency of the 8th-order Gauss–Jackson multistep method. We anticipate a significant acceleration of the scheme in a multiprocessor environment.  相似文献   
30.
Green water loads on moored or sailing ships occur when an incoming wave significantly exceeds the freeboard and water runs onto the deck. In this paper, a Navier–Stokes solver with a free surface capturing scheme (i.e. the VOF model; [Hirt and Nichols, 1981]) is used to numerically model green water loads on a moored FPSO exposed to head sea waves. Two cases are investigated: first, green water on a fixed vessel has been analysed, where resulting waterheight on deck, and impact pressure on a deck mounted structure have been computed. These results have been compared to experimental data obtained by [Greco, 2001] and show very favourable agreement. Second, a full green water incident, including vessel motions has been modelled. In these computations, the vertical motion has been modelled by the use of transfer functions for heave and pitch, but the rotational contribution from the pitch motion has been neglected. The computed water height on deck has been compared to the experimental data obtained by [Buchner, 1995a] and it also shows very good agreement. The modelling in the second case was performed in both 2-D and 3-D with very similar results, which indicates that 3-D effects are not dominant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号