首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
地质学   33篇
  2022年   1篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2016年   1篇
  2014年   1篇
  2013年   4篇
  2012年   4篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有33条查询结果,搜索用时 0 毫秒
31.
Doklady Earth Sciences - This study presents the first data set of sulfur isotope compositions of primary Ru–Os sulfides, represented by laurite (RuS2) – erlichmanite (OsS2) series,...  相似文献   
32.
The composition and isotopic-geochemical peculiarities of zircons from the ore-bearing ultramafic-mafic intrusions of western Taimyr that are promising for finding Pt-Cu-Ni mineralization were characterized for the first time. The similar U-Pb age of zircons from the Binyuda and Dyumaltei intrusions (248.3 ± 13 and 244.4 ± 2.4 Ma, respectively) indicates that the intrusions were formed almost synchronously with tholeiitic basalts of the Siberian Platform. The age and Nd-Sr data of intrusions of western Taimyr are distinct from those of economic ore-bearing intrusions of the Noril’sk province characterized by long-term magmatic evolution of the rocks and different material sources.  相似文献   
33.
Summary ?We report, for the first time, the occurrence of five palladium-rich, one palladium bearing and two gold-silver minerals from podiform chromitites in the Eastern Alps. Minerals identified include braggite, keithconnite, stibiopalladinite, potarite, mertieite II, Pd-bearing Pt-Fe alloy, native gold and Ag-Au alloy. They occur in heavy mineral concentrates produced from two massive podiform chromitite samples (unaltered and highly altered) of the Kraubath ultramafic massif, Styria, Austria. Distribution patterns of platinum-group elements (PGE) in these chromitites show considerable differences in the behaviour of the less refractory PGE (PPGE-group: Rh, Pt, Pd) compared to the refractory PGE (IPGE-group: Os, Ir, Ru). PPGE are more enriched in chromitite showing pronounced alteration features. The unaltered chromitite displays a negatively sloped chondrite-normalised PGE pattern similar to typical ophiolitic-podiform chromitite. Except for the Pd- and Au-Ag minerals that are generally rare in ophiolites, about 20 other platinum-group minerals (PGM) have been discovered. They include PGE-sulphides (laurite, erlichmanite, kashinite, bowieite, cuproiridsite, cuprorhodsite, unnamed Ir-rich variety of ferrorhodsite, unnamed Ni-Fe-Cu-Rh- and Ni-Fe-Cu-Ir-Rh monosulphides), PGE alloys (Pt-Fe, Ir-Os, Os-Ir and Ru-Os-Ir), PGE-sulpharsenides (irarsite, hollingworthite, platarsite, ruarsite and a number of intermediate species), sperrylite and a Ru-rich oxide (?). Three PGM assemblages have been recognised and attributed to different processes ranging from magmatic to hydrothermal and weathering-related. Pd-rich minerals are characteristic of both chromitite types, although their chemistry and relative proportions vary considerably. Keithconnite, braggite and Pd-bearing ferroan platinum, together with a number of PGE-sulphides (mainly laurite-erlichmanite) and alloys, are typical only of the unaltered podiform chromitite (assemblage I). Euhedral mono- and polyphase PGM grains in the submicron to 100 μm range show features of primary magmatic assemblages. The diversity of PGM in these assemblages is unusual for ophiolitic environments. In assemblage II, laurite-erlichmanite is intergrown with and overgrown by PGE-sulpharsenides; other minerals of assemblage I are missing. Potarite, stibiopalladinite, mertieite II, native gold and Ag-Au alloys, as well as PGE-sulpharsenides, sperrylite and base metal arsenides and sulphides are characteristic for the highly altered chromitite (assemblage III). They occur either interstitial to chromite in association with metamorphic silicates, in chromite rims or along cracks, and are thus interpreted as having formed by remobilization of PGE by hydrothermal processes during polyphase regional metamorphism. Received August 3, 2000;/revised version accepted December 28, 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号