首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   7篇
  国内免费   1篇
测绘学   1篇
大气科学   3篇
地球物理   36篇
地质学   20篇
海洋学   15篇
天文学   21篇
自然地理   2篇
  2023年   1篇
  2021年   1篇
  2020年   4篇
  2019年   4篇
  2018年   4篇
  2017年   2篇
  2015年   1篇
  2014年   4篇
  2013年   10篇
  2012年   3篇
  2011年   6篇
  2010年   3篇
  2009年   7篇
  2008年   5篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1998年   3篇
  1994年   1篇
  1993年   3篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1980年   1篇
  1979年   4篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1963年   1篇
排序方式: 共有98条查询结果,搜索用时 62 毫秒
51.
The interaction of optically emitting clouds with warm X-ray gas and hot, tenuous radio plasma in radio jet cocoons is modelled by 2D compressible hydrodynamic simulations. The initial setup is the Kelvin–Helmholtz instability at a contact surface of density contrast 104. The denser medium contains clouds of higher density. Optically thin radiation is realized via a cooling source term. The cool phase effectively extracts energy from the other gas which is both, radiated away and used for acceleration of the cold phase. This increases the system's cooling rate substantially and leads to a massively amplified cold mass dropout. We show that it is feasible, given small seed clouds of the order of  100 M  , that all of the optically emitting gas in a radio jet cocoon may be produced by this mechanism on the propagation time-scale of the jet. The mass is generally distributed as   T −1/2  with temperature, with a prominent peak at 14 000 K. This peak is likely to be related to the counteracting effects of shock heating and a strong rise in the cooling function. The volume filling factor of cold gas in this peak is of the order of  10−5–10−3  and generally increases during the simulation time.
The simulations tend towards an isotropic scale-free Kolmogorov-type energy spectrum over the simulation time-scale. We find the same Mach-number density relation as Kritsuk & Norman and show that this relation may explain the velocity widths of emission lines associated with high-redshift radio galaxies, if the environmental temperature is lower, or the jet-ambient density ratio is less extreme than in their low-redshift counterparts.  相似文献   
52.
53.
The replacement of the late Precambrian Ediacaran biota by morphologically disparate animals at the beginning of the Phanerozoic was a key event in the history of life on Earth, the mechanisms and the time‐scales of which are not entirely understood. A composite section in Namibia providing biostratigraphic and chemostratigraphic data bracketed by radiometric dating constrains the Ediacaran–Cambrian boundary to 538.6–538.8 Ma, more than 2 Ma younger than previously assumed. The U–Pb‐CA‐ID TIMS zircon ages demonstrate an ultrashort time frame for the LAD of the Ediacaran biota to the FAD of a complex, burrowing Phanerozoic biota represented by trace fossils to a 410 ka time window of 538.99 ± 0.21 Ma to 538.58 ± 0.19 Ma. The extremely short duration of the faunal transition from Ediacaran to Cambrian biota within less than 410 ka supports models of ecological cascades that followed the evolutionary breakthrough of increased mobility at the beginning of the Phanerozoic.  相似文献   
54.
55.
56.
Interest in groundwater (GW)-surface water (SW) interactions has grown steadily over the last two decades. New regulations such as the EU Water Framework Directive (WFD) now call for a sustainable management of coupled ground- and surface water resources and linked ecosystems. Embracing this mandate requires new interdisciplinary research on GW-SW systems that addresses the linkages between hydrology, biogeochemistry and ecology at nested scales and specifically accounts for small-scale spatial and temporal patterns of GW-SW exchange. Methods to assess these patterns such as the use of natural tracers (e.g. heat) and integrated surface-subsurface numerical models have been refined and enhanced significantly in recent years and have improved our understanding of processes and dynamics. Numerical models are increasingly used to explore hypotheses and to develop new conceptual models of GW-SW interactions. New technologies like distributed temperature sensing (DTS) allow an assessment of process dynamics at unprecedented spatial and temporal resolution. These developments are reflected in the contributions to this Special Issue on GW-SW interactions. However, challenges remain in transferring process understanding across scales.  相似文献   
57.
A survey is given on the present state of the geomagnetic dynamo theory which is based on the electrodynamics of mean fields in electrically conducting turbulent media. Models of both the 2-type and the ω-type are taken into consideration, i.e. models where the -effect alone, or together with a differential rotation, gives rise to the regeneration of magnetic fields. Results of special investigations are given and discussed. Models of the 2-type apply to the Earth provided that it shows no noticeable differential rotation. It is pointed out that such models can explain not only the generation of a magnetic field with an axisymmetric dipole-like structure, but also the occurrence of non-axisymmetric components and their westward drift. If, however, a noticeable differential rotation exists, models of the ω-type have to be envisaged. Such models also allow an understanding of the existence of a magnetic field with an axisymmetric dipole-like structure, but they do not provide for a straightforward interpretation of the occurrence and behaviour of the non-axisymmetric components.  相似文献   
58.
Upper Cretaceous strata of the Mahajanga Basin, northwestern Madagascar, yield some of the most significant and exquisitely preserved vertebrate fossils known from Gondwana. The sedimentology of these strata and their stratigraphic relations have been the focus of renewed geological investigations during the course of five expeditions since 1993. We here designate stratotypes and formalize the terrestrial Maevarano Formation, with three new members (Masorobe, Anembalemba, Miadana), and the overlying marine Berivotra Formation. The Maevarano Formation accumulated on a broad, semiarid alluvial plain bounded to the southeast by crystalline highlands and to the northwest by the Mozambique Channel. The Berivotra Formation was deposited in an open marine setting that evolved from a clastic- to a carbonate-dominated shelf, resulting in deposition of the overlying Betsiboka limestone of Danian age. New stratigraphic data clearly indicate that the Maevarano Formation correlates, at least in part, with the Maastrichtian Berivotra Formation, and this in turn indicates that the most fossiliferous portions of the Maevarano Formation are Maastrichtian in age, rather than Campanian as previously reported. This revised age for the Maevarano vertebrate assemblage indicates that it is approximately contemporaneous with the vertebrate fauna recovered from the Deccan basalt volcano-sedimentary sequence of India. The comparable age of these two faunas is significant because the faunas appear to be more similar to one another than either is to those from any other major Gondwanan landmass. The revised age of the Maevarano Formation, when considered in the light of our recent fossil discoveries, further indicates that the ancestral stocks of Madagascar's overwhelmingly endemic modern vertebrate fauna arrived on the island in post-Mesozoic times. The basal stocks of the modern vertebrate fauna are conspicuously absent in the Maevarano Formation. Finally, the revised age of the Maevarano Formation serves to expand our global perspective on the K/T event by clarifying the age of a diverse, and arguably the best preserved, sample of Gondwanan vertebrates from the terminal Cretaceous.  相似文献   
59.
International Journal of Earth Sciences - In the Cadomian orogen of the NE Bohemian Massif and of SW Iberia, a post-Gaskiers glacial event dated at c. 565 Ma has been detected. Such...  相似文献   
60.
Estimating the hydrological regime of ungauged catchments in the Himalayan region is challenging due to a lack of sufficient monitoring stations. In this paper, the spatial transferability of the model parameters of the process‐oriented J2000 hydrological model was investigated in 2 glaciated subcatchments of the Koshi river basin in eastern Nepal. The catchments have a high degree of similarity with respect to their static landscape features. The model was first calibrated (1986–1991) and validated (1992–1997) in the Dudh Koshi subcatchment. The calibrated and validated model parameters were then transferred to the nearby Tamor catchment (2001–2009). Sensitivity and uncertainty analyses were carried out for both subcatchments to discover the sensitivity range of the parameters in the two catchments. The model represented the overall hydrograph well in both subcatchments, including baseflow, rising and falling limbs; however, the peak flows were underestimated. The efficiency results according to both Nash–Sutcliffe (ENS) and the coefficient of determination (r2) were above 0.84 in both catchments (1986–1997 in Dudh Koshi and 2001–2009 in Tamor). The ranking of the parameters in respect to their sensitivity matched well for both catchments while taking ENS and log Nash–Sutcliffe (LNS) efficiencies into account. However, there were some differences in sensitivity to ENS and LNS for moderately and less‐sensitive parameters, although the majority (13 out of 16 for ENS and 16 out of 16 for LNS) had a sensitivity response in a similar range. The generalized uncertainty likelihood estimation results suggest that the parameter uncertainty are most of the time within the range and the ensemble mean matches very good (ENS: 0.84) with observed discharge. The results indicate that transfer of the J2000 parameters to a neighbouring catchment in the Himalayan region with similar physiographic landscape characteristics is viable. This indicates the possibility of applying a calibrated process‐based J2000 model to other ungauged catchments in the Himalayan region, which could provide important insights into the hydrological system dynamics and provide much needed information to support water resources planning and management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号