首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   3篇
  国内免费   9篇
测绘学   2篇
大气科学   11篇
地球物理   74篇
地质学   50篇
海洋学   80篇
天文学   21篇
综合类   4篇
自然地理   23篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   6篇
  2016年   22篇
  2015年   6篇
  2014年   13篇
  2013年   15篇
  2012年   10篇
  2011年   11篇
  2010年   11篇
  2009年   16篇
  2008年   11篇
  2007年   10篇
  2006年   14篇
  2005年   12篇
  2004年   7篇
  2003年   12篇
  2002年   4篇
  2001年   8篇
  2000年   5篇
  1999年   6篇
  1998年   12篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   5篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1984年   2篇
  1982年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
  1961年   1篇
  1958年   1篇
  1937年   1篇
排序方式: 共有265条查询结果,搜索用时 31 毫秒
151.
Geological evidence of severe tsunami inundation has been discovered in northern Japan. In the dune fields of Shimokita, in northernmost Tohoku, we have found two distinctive sand layers that are tsunami deposits. The run-up height of >20 m and inland inundation of at least 1.4 km are notably larger than any known historical case in Japan. The tsunami-genic earthquake that resulted in these deposits is thought to have taken place in the Kuril Forearc-Trench system nearly 700 years ago. The recurrence interval of major tsunamis originating in the Kuril subduction zone is about 400 years. Given that the most recent unusually large earthquake took place in AD 1611 (corresponding to the Keicho earthquake tsunami), the findings presented here increase the potential and hazard for an outsized tsunami striking the Pacific coast of northern Japan.  相似文献   
152.
153.
We analyzed the community structure of marine ammonia-oxidizing archaea (AOA) by sequencing the ammonia monooxygenase subunit A (amoA) gene. Cells were grown in ammonium-enriched seawater at various temperatures. Most amoA clones retrieved prior to cultivation belonged to Water Column Cluster B (WCB); however, most clones retrieved after incubation at high temperature belonged to Water Column Cluster A (WCA) or the Nitrosopumilus maritimus-like (NM) group. Some operational taxonomic units in the NM and WCA groups may be better adapted to higher temperature than those in WCB. Hence, differing temperature adaptations among AOA groups may be related to community structures and depth distributions.  相似文献   
154.
This study determined the factors contributing to the spatial distribution of 14 metal concentrations in the surface sediments of Beppu Bay on the basis of comparisons of the organic geochemical properties and environmental parameters through principal component analysis (PCA) and redundancy analysis (RDA). The results of PCA and RDA showed that the concentrations of V, Cr, Co, and As were closely related to the distances between the sampling sites and the Oita River. This indicated that these metals originated from the river's drainage area. The Mn, Cu, Mo, and Cd concentrations were related to the water depth. These results indicated that the Mo, Cd, and Cu deposition processes were controlled by oxygen depletion, and that these elements accumulated in the deeper parts of the bay under anoxic conditions.  相似文献   
155.
156.
Numerical simulation of impact cratering on granular material   总被引:1,自引:0,他引:1  
Koji Wada  Hiroki Senshu 《Icarus》2006,180(2):528-545
A new numerical code based on the Distinct Element Method (DEM) is developed to study the impact cratering processes on granular material. This code has a potential advantage to simulate the cratering process on granular material, since the movement of discrete particles can be treated. To show the physical plausibility of this code, we conduct 3-D numerical simulations of vertical impact into granular material targets that consist of 384,000 particles, and compare the results with those from experimental studies. It is shown that the excavation stage of cratering derived from experimental studies is represented well by our simulation: the size of the crater cavity, and the ejecta velocity and angle distributions are consistent with those obtained in laboratory experiments. The impact simulation code developed in this study is thus suggested to be useful for the analysis of the impact cratering process on granular material.  相似文献   
157.
Koji Fujita 《水文研究》2007,21(21):2892-2896
The impact of the timing of dust deposition on glacier runoff was evaluated using a glacier mass‐balance model with a newly improved scheme to track a dusted layer in a snow layer of a glacier. The lowering of surface albedo due to the dusted layer appearing leads to a drastic increase of glacier runoff even under the same meteorological conditions. Calculations of seasonal sensitivity, the relationship between dusted date and resulting runoff, have shown that dust deposition during a melting season might cause a drastic mass outflow from a glacier through changing the surface albedo during the melting season. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
158.
Bivalves, crabs, fishes, seawater, and sediment collected from the inner part of Tokyo Bay, Japan, were measured for 20 polybrominated diphenyl ether (PBDE) and 5 polychlorinated biphenyl (PCB) congeners. To determine the trophic levels of the organisms, carbon and nitrogen stable isotope ratios (δ13C and δ15N) were also measured. Bioconcentration factors of PBDE and PCB congeners increased as the octanol-water partition coefficient (Kow) rose to log Kow = 7, above which they decreased again. Biomagnification of PCBs and several PBDE congeners (BDE47, 99, 100, 153 and 154) up the trophic ladder was confirmed by a positive correlation between their concentrations and δ15N. Other PBDE congeners showed a negative or no correlation, suggesting their biotransformation through metabolism. The more hydrophobic congeners of both PBDEs (Br = 2-6) and PCBs (Cl = 6-9) were biomagnified more. It thus appears that PBDEs are less biomagnified than PCBs.  相似文献   
159.
We estimated stored sediment and carbon during the Holocene for each layer of the Yahagi River Delta, central Japan and discussed the provenance of stored carbon. To estimate the bulk density and the carbon content of each layer, we collected two 30 m deep undisturbed cores. The volume of each layer was calculated using ArcView 3D analyst. Although the volume ratio of each layer to the total volume was calculated to be 9.5% for the top mud layer, 34.9% for the upper sand layer, 32.8% for the middle mud layer and 22.9% for the lower sand layer, the mass ratio of each layer to the total mass was calculated to be 8.5, 40.9, 25.2 and 25.4%, respectively, and the stored carbon ratio in each layer to the total stored carbon was 20.4, 4.7, 55.9 and 18.9%, respectively. These results suggest that the top mud and middle mud layers have a significant role as a place for carbon sequestration during postglacial time. Total stored carbon in the study area of only 92.1 km2 was estimated at 26 Tg C, which is equivalent to 0.003% of atmospheric carbon. This suggests that deltas on the globe have accumulated a massive amount of carbon during the evolution. The inorganic carbon ratio to total carbon reached more than 45% around the boundary between the middle mud and lower sand layers. The increasing trend in the Corg/Ntotal ratio accompanied with a decrease in δ13C from the bottom to the top horizon in the middle mud layer indicates a gradual increase in terrestrial organic matter contribution. The relative proportion of terrestrially derived materials decreases with increasing distance seaward.  相似文献   
160.
To clarify the effect of a surface regolith layer on the formation of craters in bedrock, we conducted impact-cratering experiments on two-layered targets composed of a basalt block covered with a mortar layer. A nylon projectile was impacted on the targets at velocities of 2 and 4 km s?1, and we investigated the crater size formed on the basalt. The crater size decreased with increased mortar thickness and decreased projectile mass and impact velocity. The normalized crater volume, πV, of all the data was successfully scaled by the following exponential equation with a reduction length λ0: πV=b0πY-b1exp(-λ/λ0), where λ is the normalized thickness T/Lp, T and Lp are the mortar thickness and the projectile length, respectively, b0 and b1 are fitted parameters obtained for a homogeneous basalt target, 10?2.7±0.7 and ?1.4 ± 0.3, respectively, and λ0 is obtained to be 0.38 ± 0.03. This empirical equation showing the effect of the mortar layer was physically explained by an improved non-dimensional scaling parameter, πY1, defined by πY1=Y/(ρtup2), where up was the particle velocity of the mortar layer at the boundary between the mortar and the basalt. We performed the impact experiments to obtain the attenuation rate of the particle velocity in the mortar layer and derived the empirical equation of upvi=0.50exp-λ1.03, where vi is the impact velocity of the projectile. We propose a simple model for the crater formation on the basalt block that the surface mortar layer with the impact velocity of up collides on the surface of the basalt block, and we confirmed that this model could reproduce our empirical equation showing the effect of the surface layer on the crater volume of basalt.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号