首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   295篇
  免费   5篇
  国内免费   10篇
测绘学   3篇
大气科学   13篇
地球物理   85篇
地质学   71篇
海洋学   87篇
天文学   21篇
综合类   4篇
自然地理   26篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   5篇
  2018年   1篇
  2017年   10篇
  2016年   14篇
  2015年   5篇
  2014年   11篇
  2013年   19篇
  2012年   13篇
  2011年   17篇
  2010年   16篇
  2009年   26篇
  2008年   14篇
  2007年   14篇
  2006年   17篇
  2005年   12篇
  2004年   10篇
  2003年   13篇
  2002年   7篇
  2001年   11篇
  2000年   5篇
  1999年   7篇
  1998年   12篇
  1997年   1篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1992年   6篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1976年   1篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
  1961年   1篇
  1958年   1篇
  1937年   1篇
排序方式: 共有310条查询结果,搜索用时 15 毫秒
301.
We investigated the water-column light utilization efficiency (Ψ) of phytoplankton photosynthesis in the Western Subarctic Gyre (WSG) of the North Pacific during summer 2008. The Ψ values (0.64–1.86 g C [g Chl a]?1 [mol photon]?1 m2) obtained were observed to increase significantly with decreasing daily photosynthetic available radiation (PAR) and were generally higher than those of previous studies, not only from the subarctic Pacific but also from the world’s oceans. To examine the effect of iron availability on Ψ in the WSG, Ψ values were estimated from the data of two in situ iron fertilization experiments: the Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study I (SEEDS-I) and II (SEEDS-II). We found that iron availability did not affect Ψ values. Overall, this study revealed that Ψ values changed remarkably in the WSG during the summer, and that higher values were found at the stations where moderate PAR levels (ca. 10–30 mol photons m?2 day?1) were observed and where autotrophic flagellates predominated in the phytoplankton assemblages.  相似文献   
302.
A post-tsunami field survey following the 2011 Tohoku-oki Earthquake Tsunami was carried out to asses inundated area in Sendai Plain, Northeast Japan. The type of inundation was classified into two categories (major and minor) according to the amount of accumulated debris, garbage and sediment. Major and minor inundations were identified up to 4 and 5 km from the coastline, respectively. Many artificial geomorphological features, such as roadway embankments and canals, were believed to have affected the run-up process of the tsunami. The inundation area of the 2011 tsunami on the Sendai Plain is compared with that of the 869 Jogan tsunami, which was reconstructed using numerical modeling based on available historical and geological records. The inundation area of the 2011 Tohoku-oki tsunami is comparable to that of the 869 Jogan tsunami, although a direct comparison is difficult due to differences in geomorphological contexts between the paleo period and the present.  相似文献   
303.
The phase transition boundary between the face-centered cubic (fcc) structure and hexagonal close-packed (hcp) structure in an Fe–Ni alloy was determined at pressures from 25 to 107 GPa by using an internally resistive-heated diamond anvil cell (DAC), combined with in situ synchrotron X-ray diffraction measurements. The fcchcp phase transition boundary in Fe–9.7 wt% Ni is located at slightly lower temperatures than that in pure Fe, confirming the previous understanding that the addition of Ni expands the stability field of the fcc phase. The dP/dT slope of the boundary was determined to be 0.0426 GPa/K, which is slightly larger than that of pure Fe. The pressure interval of the two-phase region is about 6 GPa at a constant temperature, implying that the previous estimates by laser-heated DAC experiments of 10–20 GPa were overestimated. The two-phase region of fcc + hcp would be limited to a pressure of about 120 GPa even in Fe–15 wt%Ni, excluding the possibility of the existence of the fcc phase in the inner core if the simple linear extrapolation of the two-phase region is applied. The pressure and temperature dependences of the c/a axial ratio of the hcp phase in Fe–9.7 wt% Ni are generally consistent with those in pure Fe, suggesting that Ni has minor effects on the c/a ratio.  相似文献   
304.
In a conventional approach, the mechanical behaviour of a structure subjected to seismic or blast waves is treated separately from its surroundings, and in many cases, the dynamic coupling effect between multiple structures and the waves propagating in the ground is disregarded. However, if many structures are built densely in a developed urban area, this dynamic interaction may not become negligible. The first purpose of this contribution is to briefly show the effect of multiple interactions between waves and surface buildings in a town. The analysis is based on a recently developed, fully coupled, rigorous mathematical study, and for simplicity, each building in the town is represented by a rigid foundation, a mass at the top and an elastic spring that connects the foundation and mass. The buildings stand at regular spatial intervals on a linear elastic half-space and are subjected to two-dimensional anti-plane vibrations. It is found that the buildings in this model significantly interact with each other through the elastic ground, and the resonant (eigen) frequencies of the collective system (buildings or town) become lower than that of a single building with the same rigid foundation. This phenomenon may be called the “town effect” or “city effect.” Then, second, it is shown that the actual, unique structural damage pattern caused by the 1976 Friuli, Italy, earthquake may better be explained by this “town effect,” rather than by investigating the seismic performance of each damaged building individually. The results suggest that it may also be possible to evaluate the physical characteristics of incident seismic/blast waves “inversely” from the damage patterns induced to structures by the waves.  相似文献   
305.
Minerals formed and mineral formation from volcanic ash by weathering   总被引:2,自引:0,他引:2  
Koji Wada 《Chemical Geology》1987,60(1-4):17-28
Weathering of volcanic ash and pumice is unique regarding minerals formed and mineral formation. These minerals include allophane, imogolite, opaline silica and some halloysites, and have distinctive structures and properties. Studies on the surface and subsurface weathering of various volcanic ashes in different settings are reviewed. This review illustrates that relatively rapid weathering of finely comminuted volcanic ash well reflects the effects of climate, vegetation and time, and produces various combinations of weathering products. The moisture regime, the nature and amount of organic matter incorporated, the deposition of volcanic ash as overburden, and the chemical and mineralogical composition of parent ash are important in controlling the mineral formation in weathered volcanic ash.  相似文献   
306.
Isotope data and trace elements concentrations are presented for volcanic and plutonic rocks from the Livingston, Greenwich, Robert, King George and Ardley islands (South Shetland arc, Antarctica). These islands were formed during subduction of the Phoenix Plate under the Antarctica Plate from Cretaceous to Tertiary. Isotopically (87Sr/86Sr)o ratios vary from 0.7033 to 0.7046 and (143Nd/144Nd)o ratios from 0.5127 to 0.5129. εNd values vary from +2.71 to +7.30 that indicate asthenospheric mantle source for the analysed samples. 208Pb/204Pb ratios vary from 38.12 to 38.70, 207Pb/204Pb ratios are between 15.49 and 15.68, and 206Pb/204Pb from 18.28 to 18.81. The South Shetland rocks are thought to be derived from a depleted MORB mantle source (DMM) modified by mixtures of two enriched mantle components such as slab-derived melts and/or fluids and small fractions of oceanic sediment (EM I and EM II). The isotopic compositions of the subduction component can be explained by mixing between at least 4 wt.% of sediment and 96 wt.% of melts and/or fluids derived from altered MORB.  相似文献   
307.
Our blue planet Earth has long been regarded to carry full of nutrients for hosting life since the birth of the planet.Here we speculate the processes that led to the birth of early life on Earth and its aftermath, finally leading to the evolution of metazoans.We evaluate:(1) the source of nutrients,(2) the chemistry of primordial ocean,(3) the initial mass of ocean,and(4) the size of planet.Among the life-building nutrients,phosphorus and potassium play a key role.Only three types of rocks can serve as an adequate source of nutrients:(a) continent-forming TTG(granite),enabling the evolution of primitive life to metazoans;(b) primordial continents carrying anorthosite with KREEP(Potassium,Rare Earth Elements, and Phosphorus) basalts,which is a key to bear life;(c) carbonatite magma,enriched in radiogenic elements such as U and Th,which can cause mutation to speed up evolution and promote the birth of new species in continental rift settings.The second important factor is ocean chemistry.The primordial ocean was extremely acidic(pH = 1-2) and enriched in halogens(CI,F and others),S,N and metallic elements(Cd,Cu,Zn,and others),inhibiting the birth of life.Plate tectonics cleaned up these elements which interfered with RNA.Blue ocean finally appeared in the Phanerozoic with pH = 7 through extensive interaction with surface continental crust by weathering,erosion and transportation into ocean.The initial ocean mass was also important.The birth of life and aftermath of evolution was possible in the habitable zone with 3-5 km deep ocean which was able to supply sufficient nutrients. Without a huge landmass,nutrients cannot be supplied into the ocean only by ridge-hydrothermal circulation in the Hadean.Finally,the size of the planet plays a crucial role.Cooling of massive planets is less efficient than smaller ones,so that return-flow of seawater into mantle does not occur until central stars finish their main sequence.Due to the suitable size of Earth,the dawn of Phanerozoic witnessed the initiation of return-flow of seawater into the mantle,leading to the emergence of huge landmass above sea-level,and the distribution of nutrients on a global scale.Oxygen pump also played a critical role to keep high-PO2 in atmosphere since then,leading to the emergence of ozone layer and enabling animals and plants to invade the land. To satisfy the tight conditions to make the Earth habitable,the formation mechanism of primordial Earth is an important factor.At first,a ’dry Earth’ must be made through giant impact,followed by magma ocean to float nutrient-enriched primordial continents(anorthosite + KREEP).Late bombardment from asteroid belt supplied water to make 3-5 km thick ocean,and not from icy meteorites from Kuiper belt beyond cool Jupiter.It was essential to meet the above conditions that enabled the Earth as a habitable planet with evolved life forms.The tight constraints that we evaluate for birth and evolution of life on Earth would provide important guidelines for planetary scientists hunting for life in the exosolar planets.  相似文献   
308.
祁连山七一冰川物质平衡的最新观测结果   总被引:20,自引:16,他引:20  
祁连山七一冰川观测结果表明, 2001/2002年度和 2002/2003 年度冰川物质平衡分别为-810mm和-316 mm水当量, 冰面出现显著的减薄状态. 和过去的观测结果相比较, 20 世纪 70 年代为较大的正平衡, 年平均为360 mm水当量; 80年代年平均为4 mm水当量, 基本接近零平衡状态. 到近两年亏损强烈, 为所有观测资料中负平衡值最大的年份, 零平衡线也达到最高位置. 物质平衡出现较大的负值和零平衡线位置升高的状况, 强烈反映了祁连山冰川对气候变暖过程的响应. 如果气候变暖趋势继续, 冰川物质平衡负值将增大、冰面减薄和雪线的升高, 冰川将继续呈现萎缩状态.  相似文献   
309.
High-T torsion experiments on lizardite + chrysotile serpentinites produced mineralogical and micro/nanostructural changes, with important implications in rheological properties. High-resolution TEM showed that specimens underwent ductile [by microkinking and (001) interlayer glide] and brittle deformation (by microfracturing), together with dehydration and break-down reactions. Lizardite is affected by polytypic disorder and microkinking [kink axial planes at high angle with respect to (001) planes], that were not present in the initial ordered 1T-lizardite. Chrysotile fibres are deformed, resulting in elliptical cross-sections, with strong loss of interlayer cohesion. Both lizardite and chrysotile break down to a fine intergrowth of olivine (up to 200 nm), talc (up to 30 nm) and poorly-crystalline material. Lizardite-out reaction preferentially occurs at kink axial planes, representing sites of preferential strain and enhanced reactivity; conversely, chrysotile break-down is a bulk process, resulting in large healed olivine aggregates, up to micrometric in size. Overall observations suggest that dehydration and break-down reactions are more advanced in chrysotile than in lizardite.  相似文献   
310.
The Chukchi and Beaufort Seas include several important hydrological features: inflow of the Pacific water, Alaska coast current ( ACC ), the seasonal to perennial sea ice cover, and landfast ice 'along the Alaskan coast. The dynamics of this coupled ice-ocean system is important for both regional scale oceanography and large-scale global climate change research. A mumber of moorings were deployed in the area by JAMSTEC since 1992, and the data revealed highly variable characteristics of the hydrological environment. A regional high-resolution coupled ice-ocean model of the Chukchi and Beaufort Seas was established to simulate the ice-ocean environment and unique seasonal landfast ice in the coastal Beaufort Sea. The model results reproduced the Beaufort gyre and the ACC. The depthaveraged annual mean ocean currents along the Beaufort Sea coast and shelf hreak compared well with data from four moored ADCPs, but the simulated velocity had smaller standard deviations, which indicate small-scale eddies were frequent in the region. The model resuits captured the sea,real variations of sea ice area as compared with remote sensing data, and the simulated sea ice velocity showed an ahnost stationary area along the Beaufort Sea coast that was similar to the observed landfast ice extent. It is the combined effects of the weak oceanic current near the coast, a prevailing wind with an onshore component, the opposite direction of the ocean current, and the blocking hy the coastline that make the Beaufort Sea coastal areas prone to the formation of landfast ice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号