首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   7篇
  国内免费   1篇
大气科学   1篇
地球物理   22篇
地质学   49篇
海洋学   2篇
天文学   3篇
综合类   1篇
自然地理   10篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   3篇
  2014年   5篇
  2013年   9篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   5篇
  2007年   7篇
  2006年   5篇
  2005年   11篇
  2004年   5篇
  2003年   2篇
  2002年   6篇
  2001年   5篇
  1984年   1篇
  1973年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
51.
Stemflow volume generation in lowland tropical forests was measured over a 1‐year period in the Malaysian state of Sarawak. The stemflow volume generated by 66 free‐standing trees with a diameter at breast height (DBH) over 1 cm and a tree height over 1 m were measured daily in a representative 10 m × 10 m plot of the forest. Throughfall in the plot was also measured using 20 gauges in a fixed position. Of the 2292 mm of total rainfall observed during the year‐long period, stemflow accounted for 3·5%, throughfall for 82% and there was an interception loss of 14·5%. Understory trees (DBH < 10 cm) played an important role in stemflow generation, producing 77% of the overall stemflow volume and 90% during storms with less than 20 mm of rainfall. Also, owing to their efficiency at funneling rainfall or throughfall water received by their crowns, some understory trees noticeably reduced the catches of the throughfall gauges situated under the reach of their crown areas. During storms producing greater than 20 mm of rainfall, 80% of the total stemflow occurred; trees with a large DBH or height and for which the ratio between crown's diameter and depth is less than 1, tended to generate more stemflow volume in these storms. Mean areal stemflow as a fraction of rainfall in this lowland tropical forest was 3·4%, but may range from 1–10% depending upon the proportion of trees that are high or poor stemflow yielders. Trees with DBH greater than 10 cm were likely to contribute less than 1% of the 3·4% mean areal stemflow in the forest. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
52.
Karavansalija ore zone is situated in the Serbian part of the Serbo‐Macedonian magmatic and metallogenic belt. The Cu–Au mineralization is hosted mainly by garnet–pyroxene–epidote skarns and shifts to lesser presence towards the nearby quartz–epidotized rocks and the overlying volcanic tuffs. Within the epidosites the sulfide mineralogy is represented by disseminated cobalt‐nickel sulfides from the gersdorfite‐krutovite mineral series and cobaltite, and pyrite–marcasite–chalcopyrite–base metal aggregates. The skarn sulfide mineralization is characterized by chalcopyrite, pyrite, pyrrhotite, bismuth‐phases (bismuthinite and cosalite), arsenopyrite, gersdorffite, and sphalerite. The sulfides can be observed in several types of massive aggregates, depending on the predominant sulfide phases: pyrrhotite‐chalcopyrite aggregates with lesser amount of arsenopyrite and traces of sphalerite, arsenopyrite–bismuthinite–cosalite aggregates with subordinate sphalerite and sphalerite veins with bismuthinite, pyrite and arsenopyrite. In the overlying volcanoclastics, the studied sulfide mineralization is represented mainly by arsenopyrite aggregates with subordinate amounts of pyrite and chalcopyrite. Gold is present rarely as visible aggregate of native gold and also as invisible element included in arsenopyrite. The fluid inclusion microthermometry data suggest homogenization temperature in the range of roughly 150–400°C. Salinities vary in the ranges of 0.5–8.5 wt% NaCl eq for two‐phase low density fluid inclusions and 15–41 wt% NaCl eq for two‐phase high‐salinity and three‐phase high‐salinity fluid inclusions. The broad range of salinity values and the different types of fluid inclusions co‐existing in the same crystals suggest that at least two fluids with different salinities contributed to the formation of the Cu–Au mineralization. Geothermometry, based on EPMA data of arsenopyrite co‐existing with pyrite and pyrrhotite, suggests a temperature range of 240–360°C for the formation of the arsenopyrite, which overlaps well with the data for the formation temperature obtained through fluid inclusion microthermometry. The sulfur isotope data on arsenopyrite, chalcopyrite, pyrite and marcasite from the different sulfide assemblages (ranging from 0.4‰ to +3.9‰ δ34SCDT with average of 2.29 δ34SCDT and standard deviation of 1.34 δ34SCDT) indicates a magmatic source of sulfur for all of the investigated phases. The narrow range of the data points to a common source for all of the investigated sulfides, regardless of the host rock and the paragenesis. The sulfur isotope data shows good overlap with that from nearby base‐metal deposits; therefore the Cu–Au mineralization and the emblematic base‐metal sulfide mineralization from this metallogenic belt likely share same fluid source.  相似文献   
53.
Classification of Tsunami and Evacuation Areas   总被引:3,自引:2,他引:1  
On March 11, 2011, a large earthquake that occurred offshore the north-east coast of Japan generated a large tsunami which devastated extensive areas of the Tohoku coastline. Despite Japan being considered a country well prepared for these types of disasters, large casualties were recorded, with numerous discussions amongst the Japanese coastal engineering community ensuing. As a result, two different levels of tsunamis have been proposed and now recognized in Japan, depending on the frequency of such extreme events. The idea that hard measures can protect the lives of inhabitants of coastal areas has been abandoned, and these measures are only considered to be effective in protecting properties against the more frequent but lower magnitude events. Soft measures should always be used to protect against the loss of lives, and to this respect, the authors of the paper propose the introduction of a Classification of Evacuation Areas, to show which of these should be prioritized by residents as they seek to evacuate.  相似文献   
54.
We present the first data on bulk‐rock major and trace element compositions for a suite of eclogite‐ and blueschist‐facies rocks from the Bantimala Complex, Indonesia, with the aim of better constraining the protolith origins and nature of the subducted crust. The eclogites can be classified into two groups: glaucophane‐rich eclogite and glaucophane‐free eclogite, whereas the blueschists are divided into albite–epidote glaucophanite and quartz–glaucophane schists. SiO2 contents of the eclogites are 43.3–49.6 wt%, with Na2O + K2O contents 3.7–4.7 wt%. The blueschists show a wider range of compositions, with SiO2 = 40.7–63.8 wt% and Na2O + K2O = 2.7–4.5 wt%. Trace element data suggest that the eclogite protoliths include both enriched and normal mid‐oceanic ridge basalt (E‐MORB and N‐MORB) and also gabbroic cumulates. The blueschists show more variation in protoliths, which include N‐MORB, Oceanic Island Basalt (OIB) and Island Arc Basalt (IAB). Plots of element concentrations against the immobile Zr show considerable mobility of large ion lithophiles but not of high field‐strength elements during high‐pressure metamorphism, and indicate that the high SiO2 content of some blueschists is probably due to metasomatism by a LILE‐rich siliceous aqueous fluid. Strong correlations between K, Rb, Ba and Cs suggests that enrichment of these elements occurred by a single process. All the protoliths were subducted, metamorphosed to blueschist/eclogite‐facies and subsequently exhumed. It is noteworthy that the samples deduced to have come from thicker‐crust environments (OIB, IAB) were subducted to shallower depths (blueschist‐facies) than MORB‐derived samples, all except one of which reached eclogite‐facies conditions. The geochemical data of this study demonstrate the variety of ocean floor types that were subducted under the southeast margin of Sundaland in the late Jurassic period.  相似文献   
55.
Abstract The internal structures of the Nojima Fault, south-west Japan, are examined from mesoscopic observations of continuous core samples from the Hirabayashi Geological Survey of Japan (GSJ) drilling. The drilling penetrated the central part of the Nojima Fault, which ruptured during the 1995 Kobe earthquake (Hyogo-ken Nanbu earthquake) ( M 7.2). It intersected a 0.3 m-thick layer of fault gouge, which is presumed to constitute the fault core (defined as a narrow zone of extremely concentrated deformation) of the Nojima Fault Zone. The rocks obtained from the Hirabayashi GSJ drilling were divided into five types based on the intensities of deformation and alteration: host rock, weakly deformed and altered granodiorite, fault breccia, cataclasite, and fault gouge. Weakly deformed and altered granodiorite is distributed widely in the fault zone. Fault breccia appears mostly just above the fault core. Cataclasite is distributed mainly in a narrow (≈1 m wide) zone in between the fault core and a smaller gouge zone encountered lower down from the drilling. Fault gouge in the fault core is divided into three types based on their color and textures. From their cross-cutting relationships and vein development, the lowest fault gouge in the fault core is judged to be newer than the other two. The fault zone characterized by the deformation and alteration is assumed to be deeper than 426.2 m and its net thickness is > 46.5 m. The fault rocks in the hanging wall (above the fault core) are deformed and altered more intensely than those in the footwall (below the fault core). Furthermore, the intensities of deformation and alteration increase progressively towards the fault core in the hanging wall, but not in the footwall. The difference in the fault rock distribution between the hanging wall and the footwall might be related to the offset of the Nojima Fault and/or the asymmetrical ground motion during earthquakes.  相似文献   
56.
The Hirabayashi borehole (Awaji Island, Japan) was drilled by the Geological Survey of Japan (GSJ) 1 year after the Hyogo-ken Nanbu (Kobe) earthquake (1995, MJMA=7.2). This has enabled scientists to study the complete sequence of deformation across the active Nojima fault, from undeformed granodiorite to the fault core. In the fault core, different types of gouge and fractures have been observed and can be interpreted in terms of a complex history of faulting and fluid circulation. Above the fault core and within the hanging wall, compacted cataclasites and gouge are cut by fractures which show high apparent porosity and are filled by 5–50 μm euhedral and zoned siderite and ankerite crystals. These carbonate-filled fractures have been observed within a 5.5-m-wide zone above the fault, but are especially abundant in the vicinity (1 m) of the fault. The log-normal crystal size distributions of the siderite and ankerite suggest that they originated by decaying-rate nucleation accompanied by surface-controlled growth in a fluid saturated with respect to these carbonates. These carbonate-filled fractures are interpreted as the result of co-seismic hydraulic fracturing and upward circulation of fluids in the hanging wall of the fault, with the fast nucleation of carbonates attributed to a sudden fluid or CO2 partial pressure drop due to fracturing. The fractures cut almost all visible structures at a thin section scale, although in some places, the original idiomorphic shape of carbonates is modified by a pressure-solution mechanism or the carbonate-filled fractures are cut and brecciated by very thin gouge zones; these features are attributed to low and high strain-rate mechanisms, respectively. The composition of the present-day groundwater is at near equilibrium or slightly oversaturated with respect to the siderite, calcite, dolomite and rhodochrosite. Taken together, this suggests that these fractures formed very late in the evolution of the fault zone, and may be induced by co-seismic hydraulic fracturing and circulation of a fluid with a similar composition to the present-day groundwater. They are therefore potentially related to recent earthquake activity (<1.2 Ma) on the Nojima fault.  相似文献   
57.
ABSTRACT

Many studies have focused on soil erosion in unmanaged Japanese cypress plantations because the sparse understory vegetation and litter covering the forest ground enhance soil erosion. In this study, soil erosion, litter, and overland flow measurements were conducted over 14 months to identify the spatio-temporal variation and examine the optimal sample size. Fifteen traps (each 0.25 m wide) were installed in line along the bottom of a 15-m-wide slope. Soil erosion and overland flow had large spatial variations as compared to litter. The temporal coefficient of variation of soil erosion and overland flow was highest during dry seasons, while smaller during wet seasons. The random sampling analysis showed that the rate of decrease in spatio-temporal variation became moderate as the sample size increased beyond six. This result indicated that the optimal sample size was five, the total width of which was equivalent to about 8% of the monitored slope width.  相似文献   
58.
Laboratory measurements for compressional and shear wave velocities (Vp and Vs, respectively) and porosity were conducted with core samples from the Nobeoka Thrust Drilling Project (NOBELL) under controlled effective pressure (5–65 MPa at 5 MPa intervals) and wet conditions. Samples were classified according to deformation texture as phyllite, foliated cataclasite, or non‐foliated cataclasite. Measured values of Vp, Vs, and porosity are within a range of 5.17–5.57 km/s, 2.60–2.71 km/s, and 2.75–3.10 %, respectively, for phyllite; 4.89–5.23 km/s, 2.46–2.57 km/s, and 3.58–4.53 %, respectively, for foliated cataclasite; and 4.90–5.32 km/s, 2.51–2.63 km/s, and 3.79–4.60 %, respectively, for non‐foliated cataclasite, which are all consistent with the previous laboratory experiments conducted with outcrop samples under dry conditions. However, our results also indicate higher Vp and Vs and lower porosity than those measured by the previous studies that adopted the wire‐line logging methods. The variations in Vp, Vs, and porosity are controlled by deformation structure and are greater for phyllite and foliated cataclasite than for non‐foliated cataclasite.  相似文献   
59.
The Taishu Group, a marine formation with a thickness of >5400 m, crops out on Tsushima Island, located in the southwestern Japan Sea. The group, which is generally regarded as early Eocene to early Miocene in age, provides important information about the tectonic setting of the Japan Sea. In this study, we present new SHRIMP U–Pb dates for igneous zircons from the Kunehama Tuff, which is in the basal part of the Taishu Group, and the Oobaura Tuff, which is in the uppermost part of the group. Results show that the Taishu Group was deposited rapidly, during the short interval of 17.9–15.9 Ma (early–middle Miocene), and is equivalent to other early–middle Miocene strata found in the Japan Sea region. Our results provide new constraints on the geological history of the Japan Sea and its islands.  相似文献   
60.
The Pongkor gold–silver mine is situated at the northeastern flank of the Bayah dome, which is a product of volcanism in the Sunda–Banda Arc. The hydrothermal alteration minerals in the Ciurug–Cikoret area are typical of those formed from acid to near‐neutral pH thermal waters. On the surface, illite/smectite mixed layer mineral (I/Sm), smectite and kaolinite, and spotting illite, I/Sm and K‐feldspar alteration occur at the top of the mineralized zone. Silicification, K‐feldspar and I/Sm zones are commonly formed in the wall rock, and gradually grade outwards into a propylitic zone. The mineralization of precious metal ore zone is constrained by fluid temperatures between 180 and 220°C, and with low salinity (<0.2 wt% NaCl equivalent) and boiling condition. The minimum depth of vein formation below the paleo‐water table is approximately 90–130 m for the hydrostatic column. Hydrogen and oxygen isotope data for quartz and calcite show relatively homogeneous fluid composition (?53 to ?68‰δD and ?5.7 to +0.3‰δ18O H2O). There is no specific trend in the data with respect to the mineralization stages and elevation, which suggests that the ore‐forming fluids did not significantly change spatially during the vein formation. The stable isotope data indicate mixing between the hydrothermal fluids and meteoric water and interaction between the hydrothermal fluids and the host rock.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号