首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19588篇
  免费   133篇
  国内免费   703篇
测绘学   1134篇
大气科学   1580篇
地球物理   3636篇
地质学   9238篇
海洋学   778篇
天文学   1317篇
综合类   1747篇
自然地理   994篇
  2020年   3篇
  2019年   2篇
  2018年   3795篇
  2017年   3243篇
  2016年   2088篇
  2015年   193篇
  2014年   67篇
  2013年   26篇
  2012年   782篇
  2011年   2194篇
  2010年   1560篇
  2009年   1808篇
  2008年   1531篇
  2007年   1908篇
  2006年   38篇
  2005年   167篇
  2004年   320篇
  2003年   336篇
  2002年   207篇
  2001年   45篇
  2000年   43篇
  1999年   11篇
  1998年   15篇
  1984年   1篇
  1981年   19篇
  1980年   17篇
  1976年   4篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
One effect of climate change may be increased hurricane frequency or intensity due to changes in atmospheric and geoclimatic factors. It has been hypothesized that wetland restoration and infrastructure hardening measures may improve infrastructure resilience to increased hurricane frequency and intensity. This paper describes a parametric decision model used to assess the tradeoffs between wetland restoration and infrastructure hardening for electric power networks. We employ a hybrid economic input–output life-cycle analysis (EIO-LCA) model to capture: construction costs and life-cycle emissions for transitioning from the current electric power network configuration to a hardened network configuration; construction costs and life-cycle emissions associated with wetland restoration; and the intrinsic value of wetland restoration. Uncertainty is accounted for probabilistically through a Monte Carlo hurricane simulation model and parametric sensitivity analysis for the number of hurricanes expected to impact the project area during the project cycle and the rate of wetland storm surge attenuation. Our analysis robustly indicates that wetland restoration and undergrounding of electric power network infrastructure is not preferred to the “do-nothing” option of keeping all power lines overhead without wetland protection. However, we suggest a few items for future investigation. For example, our results suggest that, for the small case study developed, synergistic benefits of simultaneously hardening infrastructure and restoring wetlands may be limited, although research using a larger test bed while integrating additional costs may find an enhanced value of wetland restoration for disaster loss mitigation.  相似文献   
12.
Numerical modeling of the Rideau Valley Watershed   总被引:1,自引:0,他引:1  
Using the Mike11 modeling system by the Danish Hydraulic Institute, a detailed model of the Rideau Valley Watershed was constructed. It includes 532 km of rivers and lakes, 106 basins, 122 bridges and culverts, and 20 water control structures. The model was calibrated using measured streamflow data for a time period of 5 years; additional 5 years of data was used for validation. Various methods, both qualitative and quantitative, were used to evaluate the model performance. It was found that the model can simulate the hydrological response with a reasonable to high degree of accuracy. This model is now being used for various watershed management purposes, including flood forecasting, dam safety assessment, quantification of wetland functions, and derivation of design flows.  相似文献   
13.
History matching is still one of the main challenging parts of reservoir study especially in giant brown oil fields with lots of wells. In these cases, history matching with conventional manual technique needs many runs and takes months to get a match. In this work, an innovative approach was suggested for fast history matching in a real brown field. The workflow was employed based on an optimized proxy model for history matching of a field consisting of 14 active wells with multiple responses (which are production rate and pressure data) in the south part of Iran. The main important features of the proposed algorithm were defining a proxy model which is response surface method in which 21 model parameters were incorporated based on cubic centered face method. The proxy model was then optimized by one of the most famous algorithms which is genetic algorithm. Proxy model was successfully performed using 256 samples leading into p- value of 0.531 and R 2 of 0.91 dataset. As a result, the proposed workflow and algorithm showed good and acceptable results for history matching of studied real model.  相似文献   
14.
Species of the macroalgae Caulerpa sp. are increasingly being observed in meadows of the endemic Mediterranean seagrass Posidonia oceanica, and in particular Caulerpa taxifolia, has been considered as an invasive species leading to seagrass decline. Studies have so far failed to reveal the underlying mechanisms of the success of the macroalgae, and here, we examine how biogeochemical changes of the environment associated to indigenous (Caulerpa prolifera) and non-indigenous (Caulerpa racemosa and C. taxifolia) species affect the habitat of P. oceanica. Two of the species (C. prolifera and C. racemosa) affect the sediment biogeochemical conditions by increasing organic matter pools, microbial activity, and sulfide pools of the sediments, and limited effects were found for C. taxifolia. Biomass of the macroalgae contributed to the extent of impacts, and high sulfide invasion into the seagrasses and regression of the meadow were pronounced at the location with the highest Caulerpa biomass. This suggests that Caulerpa invasion contributes to seagrass decline probably because Caulerpa thrives better than the seagrasses in the modified environment.  相似文献   
15.
16.
17.
18.
Load displacement analysis of drilled shafts can be accomplished by utilizing the “t-z” method, which models soil resistance along the length and tip of the drilled shaft as a series of springs. For non-linear soil springs, the governing differential equation that describes the soil-structure interaction may be discretized into a set of algebraic equations based upon finite difference methods. This system of algebraic equations may be solved to determine the load–displacement behavior of the drilled shaft when subjected to compression or pullout. By combining the finite difference method with Monte Carlo simulation techniques, a probabilistic load–displacement analysis can be conducted. The probabilistic analysis is advantageous compared to standard factor of safety design because uncertainties with the shaft–soil interface and tip properties can be independently quantified. This paper presents a reliability analysis of drilled shaft behavior by combining the finite difference technique for analyzing non-linear load–displacement behavior with Monte Carlo simulation method. As a result we develop probabilistic relationships for drilled shaft design for both total stress (undrained) and effective stress (drained) parameters. The results are presented in the form of factor of safety or resistance factors suitable for serviceability design of drilled shafts.  相似文献   
19.
Fluid exchange across the sediment–water interface in a sandy open continental shelf setting was studied using heat as a tracer. Summertime tidal oscillation of cross-shelf thermal fronts on the South Atlantic Bight provided a sufficient signal at the sediment–water interface to trace the advective and conductive transport of heat into and out of the seabed, indicating rapid flushing of ocean water through the upper 10–40 cm of the sandy seafloor. A newly developed transport model was applied to the in situ temperature data set to estimate the extent to which heat was transported by advection rather than conduction. Heat transported by shallow 3-D porewater flow processes was accounted for in the model by using a dispersion term, the depth and intensity of which reflected the depth and intensity of shallow flushing. Similar to the results of past studies in shallower and more energetic nearshore settings, transport of heat was greater when higher near-bed velocities and shear stresses occurred over a rippled bed. However, boundary layer processes by themselves were insufficient to promote non-conductive heat transport. Advective heat transport only occurred when both larger boundary layer stresses and thermal instabilities within the porespace were present. The latter process is dependent on shelf-scale heating and cooling of bottom water associated with upwelling events that are not coupled to local-scale boundary layer processes.  相似文献   
20.
Because the flexible net barrier is a gradually developed open-type debris-flow counter-measure, there are still uncertainties in its design criterion. By using several small-scale experimental flume model tests, the dynamical evolution properties of debris flows controlled by large and small mesh-sized (equal to D90 and D50, respectively) flexible net barriers are studied, including the debris flow behaviors, segregation, and permeability of sediments, as well as the energy absorption rates and potential overtopping occurring when debris flows impact the small mesh-sized one. Experimental results reveal that (a) two sediment deposition patterns are observed depending on variations in debris flow textures and mesh sizes; (b) the aggregation against flexible net barriers is dominated by flow dynamics; (c) the segregation and permeable functions of the barrier are determined by the mesh size, concentration, and flow dynamics; and (d) the smaller mesh-sized flexible net barrier tends to be more efficient in restraining more turbulent debris flows and can absorb greater rate of kinematic energy, and finally, the great kinematic energy dissipation that occurs when secondary debris flows interact with the post-deposits in front of the small mesh-sized flexible net barrier is believed to cause the failure of overtopping phenomenon. The mesh size is concluded to be the decisive parameter that should be associated with debris flow textures to design the control functions of flexible net barriers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号