首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   884篇
  免费   34篇
  国内免费   21篇
测绘学   8篇
大气科学   121篇
地球物理   191篇
地质学   369篇
海洋学   30篇
天文学   191篇
综合类   4篇
自然地理   25篇
  2021年   13篇
  2020年   13篇
  2019年   11篇
  2018年   13篇
  2017年   13篇
  2016年   23篇
  2015年   28篇
  2014年   28篇
  2013年   44篇
  2012年   41篇
  2011年   42篇
  2010年   34篇
  2009年   40篇
  2008年   48篇
  2007年   31篇
  2006年   33篇
  2005年   37篇
  2004年   31篇
  2003年   24篇
  2002年   28篇
  2001年   19篇
  2000年   23篇
  1999年   19篇
  1998年   15篇
  1997年   7篇
  1996年   13篇
  1995年   11篇
  1994年   14篇
  1993年   10篇
  1992年   8篇
  1991年   17篇
  1990年   9篇
  1989年   6篇
  1988年   11篇
  1987年   8篇
  1986年   7篇
  1985年   8篇
  1984年   12篇
  1983年   13篇
  1981年   16篇
  1980年   12篇
  1979年   7篇
  1978年   12篇
  1977年   8篇
  1976年   13篇
  1975年   8篇
  1974年   6篇
  1973年   10篇
  1972年   6篇
  1960年   4篇
排序方式: 共有939条查询结果,搜索用时 31 毫秒
771.
A global spectral barotropic ocean model is introduced to describe the depth-averaged flow. The equations are based on vorticity and divergence (instead of horizontal momentum); continents exert a nearly infinite drag on the fluid. The coding follows that of spectral atmospheric general circulation models using triangular truncation and implicit time integration to provide a first step for seamless coupling to spectral atmospheric global circulation models and an efficient method for filtering of ocean wave dynamics. Five experiments demonstrate the model performance: (i) Bounded by an idealized basin geometry and driven by a zonally uniform wind stress, the ocean circulation shows close similarity with Munk’s analytical solution. (ii) With a real land–sea mask the model is capable of reproducing the spin-up, location and magnitudes of depth-averaged barotropic ocean currents. (iii) The ocean wave-dynamics of equatorial waves, excited by a height perturbation at the equator, shows wave dispersion and reflection at eastern and western coastal boundaries. (iv) The model reproduces propagation times of observed surface gravity waves in the Pacific with real bathymetry. (v) Advection of tracers can be simulated reasonably by the spectral method or a semi-Langrangian transport scheme. This spectral barotropic model may serve as a first step towards an intermediate complexity spectral atmosphere–ocean model for studying atmosphere–ocean interactions in idealized setups and long term climate variability beyond millennia.  相似文献   
772.
Temporal and spatial variations of stable oxygen (18O) and hydrogen (2H) isotope measurements in precipitation act as important proxies for changing hydro‐meteorological and regional and global climate patterns. Temporal trends in time series of the stable isotope composition in precipitation were rarely observed, and they are poorly understood. These might be a result of a lack of proper trend detection tools and effort for exploring trend processes. Here, we investigate temporal trends of δ18O in precipitation at 17 observation stations in Germany between 1978 and 2009. We test if significant trends in the isotope time series from different models can be observed. Mann–Kendall trend tests are applied on the isotope series, using general multiplicative seasonal autoregressive integrate moving average (ARIMA) models, which account for first and higher order serial correlations. Effects of temperature, precipitation, and geographic parameters on isotope trends are also investigated in the proposed models. To benchmark our proposed approach, the ARIMA results are compared with a trend‐free pre‐whitening procedure, the state of the art method for removing the first order autocorrelation in environmental trend studies. Moreover, we further explore whether higher order serial correlations in isotope series affects our trend results. Overall, three out of the 17 stations show significant changes when higher order autocorrelation are adjusted, and four show a significant trend when temperature and precipitation effects are considered. The significant trends in the isotope time series generally occur only at low elevation stations. Higher order autoregressive processes are shown to be important in the isotope time series analysis. Results suggest that the widely used trend analysis with only the first order autocorrelation adjustment may not adequately take account of the high order autocorrelated processes in the stable isotope series. The investigated time series analysis method including higher autocorrelation and external climate variable adjustments is shown to be a better alternative. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
773.
774.
775.
Regional temperature anomalies in China during 800?C2005 ad in an ensemble simulation with the atmosphere?Cocean general circulation model ECHAM5/MPIOM subject to anthropogenic and natural forcings are compared to reconstructions. In a mutual assessment of three reconstructed data sets and two ensemble simulations with different solar forcings, a reconstructed data set and a simulated ensemble for weak solar variability are selected for further comparison. Temperature variability in the selected simulated and reconstructed data shows a continuous power spectrum with weak long-term memory. The simulation reveals weak long-term anomaly periods known as the Medieval Warm Period (MWP), the Little Ice Age (LIA), and the Modern Warming (MW) in the three considered regions: Northeast, Southeast, and West China. The ensemble spread yields an uncertainty of ±0.5°C in all regions. The simulated temperature varies nearly synchronously in all three regions, whereas reconstructed data hint to increased decadal variability in the West and centennial variability in the Northeast. Cold periods are found in 1200?C1300 and in 1600?C1900 ad in all regions. The coldest anomalies which are caused by volcanic eruptions in the beginnings of the thirteenth and the nineteenth centuries are only partly consistent with reconstructed data. After 1800, the annual cycle reduces in the Northeast and on the Tibetan plateau, whereas the eastern Pacific shows an enhanced summer?Cwinter contrast.  相似文献   
776.
A review of the lithostratigraphic units in the Río de la Plata Craton and of new and previously published geochronological, isotopic and geophysical data is presented. Sm?CNd TDM model ages between 2.6 and 2.2?Ga characterize the Piedra Alta Terrane of this craton. Crystallization ages between 2.2 and 2.1?Ga for the metamorphic protoliths and 2.1?C2.0?Ga for the post-orogenic granitoids indicate juvenile crust, followed by a short period of crustal recycling. Cratonization of this terrane occurred during the late Paleoproterozoic. Younger overprinting is not observed, suggesting it had a thick and strong lithosphere in the Neoproterozoic. A similar scenario is indicated for the Tandilia Belt of Argentina. Sm?CNd TDM model ages for the Nico Pérez Terrane show two main events of crustal growth (3.0?C2.6?and 2.3?C1.6?Ga). The crystallization ages on zircon ranges between 3.1 and 0.57?Ga, which is evidence for long-lived crustal reworking. The age for cratonization is still uncertain. In the Taquarembó Block, which is considered the prolongation of the Nico Pérez Terrane in southern Brazil, a similar scenario can be observed. These differences together with contrasting geophysical signatures support the redefinition of the Río de la Plata Craton comprising only the Piedra Alta Terrane and the Tandilia Belt. The Sarandí del Yí Shear Zone is regarded as the eastern margin of this Craton.  相似文献   
777.
Whole-rock geochemical analyses using major and trace elements in combination with the Sm–Nd and Pb–Pb isotope systems, together with SHRIMP age dating on metasedimentary rocks from the Sierras de Chepes, the Sierras de Córdoba, the Sierra Norte and the San Luis Formation in the Sierra de San Luis, have been carried out to unravel the provenance and the geodynamic history of the Eastern Sierras Pampeanas, Central Argentina. The geochemical and the Sm–Nd data point to a slightly stronger mafic and less-fractionated material in the provenance area of the Sierras de Córdoba when compared to the other units. The TDM model ages from the Sierras de Chepes (~1.82 Ga) and the Sierra Norte (~1.79 Ga) are significantly older than the data from the Sierras de Córdoba (1.67 Ga). The Pb data are homogeneous for the different units. Only the 208Pb/204Pb ratios of some samples from the Sierras de Córdoba are higher. A late Pampean detrital zircon peak around 520 Ma from the Sierras de Chepes is in accordance with the new data from the San Luis Formation. This is similar to the literature data from the Famatina Belt located to the northwest of the Sierras de Chepes and also fits the detrital zircon peaks in the Mesón group. These maximum depositional ages were also reported from some locations in the Puncoviscana Formation but are absent in the Sierras de Córdoba. An improved model for the development of the Eastern Sierras Pampeanas in the area between the Sierras de Córdoba and the Puncoviscana Formation is provided. This gives new insights into the late Pampean development of the Sierra de San Luis and the complex development of the Eastern Sierras Pampeanas. This new model explains the younger detrital ages in the Puncoviscana Formation compared with the older ages of the Sierras de Córdoba. Another model of the Sierra de San Luis explains the younger depositional ages of the Pringles Metamorphic Complex and the San Luis Formation when compared to the Nogolí Metamorphic Complex and the Conlara Metamorphic Complex. Additionally, the rather fast change of the high-grade metamorphic conditions in the Pringles Metamorphic Complex and the low-grade metamorphic conditions in the San Luis Formation is explained by extension, the ascent of (ultra) mafic material and later folding and erosion.  相似文献   
778.
The Eastern Sierras Pampeanas were structured by three main events: the Ediacaran to early Cambrian (580?C510?Ma) Pampean, the late Cambrian?COrdovician (500?C440?Ma) Famatinian and the Devonian-Carboniferous (400?C350?Ma) Achalian orogenies. Geochronological and Sm?CNd isotopic evidence combined with petrological and structural features allow to speculate for a major rift event (Ediacaran) dividing into two Mesoproterozoic major crustal blocks (source of the Grenvillian age peaks in the metaclastic rocks).This event would be coeval with the development of arc magmatism along the eastern margin of the eastern block. Closure of this eastern margin led to a Cambrian active margin (Sierra Norte arc) along the western margin of the eastern block in which magmatism reworked the same crustal block. Consumption of a ridge segment (input of OIB signature mafic magmas) which controlled granulite-facies metamorphism led to a final collision (Pampean orogeny) with the western Mesoprotrozoic block. Sm?CNd results for the metamorphic basement suggest that the T DM age interval of 1.8?C1.7?Ga, which is associated with the less radiogenic values of ??Nd(540) (?6 to ?8), can be considered as the mean average crustal composition for the Eastern Sierras Pampeanas. Increasing metamorphic grade in rocks with similar detrital sources and metamorphic ages like in the Sierras de Córdoba is associated with a younger T DM age and a more positive ??Nd(540) value. Pampean pre-540?Ma granitoids form two clusters, one with T DM ages between 2.0 and 1.75?Ga and another between 1.6 and 1.5?Ga. Pampean post-540?Ma granitoids exhibit more homogenous T DM ages ranging from 2.0 to 1.75?Ga. Ordovician re-activation of active margin along the western part of the block that collided in the Cambrian led to arc magmatism (Famatinian orogeny) and related ensialic back-arc basin in which high-grade metamorphism is related to mid-crustal felsic plutonism and mafic magmatism with significant contamination of continental crust. T DM values for the Ordovician Famatinian granitoids define a main interval of 1.8?C1.6, except for the Ordovician TTG suites of the Sierras de Córdoba, which show younger T DM ages ranging from 1.3 to 1.0?Ga. In Devonian times (Achalian orogeny), a new subduction regime installed west of the Eastern Sierras Pampeanas. Devonian magmatism in the Sierras exhibit process of mixing/assimilation of depleted mantle signature melts and continental crust. Achalian magmatism exhibits more radiogenic ??Nd(540) values that range between 0.5 and ?4 and T DM ages younger than 1.3?Ga. In pre-Devonian times, crustal reworking is dominant, whereas processes during Devonian times involved different geochemical and isotopic signatures that reflect a major input of juvenile magmatism.  相似文献   
779.
Four silicate glasses were prepared by the fusion of about 1 kg powder each of a basalt, syenite, soil and andesite to provide reference materials of natural composition for microanalytical work. These glasses are referred to as ‘Chinese Geological Standard Glasses’ (CGSG) ‐1, ‐2, ‐4 and ‐5. Micro and bulk analyses indicated that the glasses are well homogenised with respect to major and trace elements. Some siderophile/chalcophile elements (e.g., Sn, Pt, Pb) may be heterogeneously distributed in CGSG‐5. This paper provides the first analytical data for the CGSG reference glasses using a variety of analytical techniques (wet chemistry, XRF, EPMA, ICP‐AES, ICP‐MS, LA‐ICP‐MS) performed in nine laboratories. Most data agree within uncertainty limits of the analytical techniques used. Discrepancies in the data for some siderophile/chalcophile elements exist, mainly because of possible heterogeneities of these elements in the glasses and/or analytical problems. From the analytical data, preliminary reference and information values for fifty‐five elements were calculated. The analytical uncertainties [2 relative standard error (RSE)] were estimated to be between about 1% and 20%.  相似文献   
780.
High-resolution multi-channel seismic data from continental slopes with minor sediment input off southwest Mallorca Island, the Bay of Oran (Algeria) and the Alboran Ridge reveal evidence that the Messinian erosional surface is terraced at an almost constant depth interval between 320 and 380 m below present-day sea level. It is proposed that these several hundred- to 2,000-m-wide terraces were eroded contemporaneously and essentially at the same depth. Present-day differences in these depths result from subsidence or uplift in the individual realms. The terraces are thought to have evolved during one or multiple periods of sea-level stagnancy in the Western Mediterranean Basin. According to several published scenarios, a single or multiple periods of relative sea-level stillstand occurred during the Messinian desiccation event, generally known as the Messinian Salinity Crisis. Some authors suggest that the stagnancy started during the refilling phase of the Mediterranean basins. When the rising sea level reached the height of the Sicily Sill, the water spilled over this swell into the eastern basin. The stagnancy persisted until sea level in the eastern basin caught up with the western Mediterranean water level. Other authors assigned periods of sea-level stagnancy to drawdown phases, when inflowing waters from the Atlantic kept the western sea level constant at the depth of the Sicily Sill. Our findings corroborate all those Messinian sea-level reconstructions, forwarding that a single or multiple sea-level stagnancies at the depth of the Sicily Sill lasted long enough to significantly erode the upper slope. Our data also have implications for the ongoing debate of the palaeo-depth of the Sicily Sill. Since the Mallorcan plateau experienced the least vertical movement, the observed terrace depth of 380 m there is inferred to be close to the Messinian depth of this swell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号