首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   888篇
  免费   31篇
  国内免费   21篇
测绘学   8篇
大气科学   121篇
地球物理   191篇
地质学   369篇
海洋学   30篇
天文学   192篇
综合类   4篇
自然地理   25篇
  2021年   13篇
  2020年   13篇
  2019年   11篇
  2018年   13篇
  2017年   13篇
  2016年   23篇
  2015年   28篇
  2014年   28篇
  2013年   44篇
  2012年   41篇
  2011年   42篇
  2010年   34篇
  2009年   40篇
  2008年   48篇
  2007年   31篇
  2006年   33篇
  2005年   37篇
  2004年   31篇
  2003年   24篇
  2002年   28篇
  2001年   19篇
  2000年   23篇
  1999年   19篇
  1998年   15篇
  1997年   7篇
  1996年   13篇
  1995年   11篇
  1994年   14篇
  1993年   10篇
  1992年   8篇
  1991年   17篇
  1990年   9篇
  1989年   6篇
  1988年   11篇
  1987年   8篇
  1986年   7篇
  1985年   8篇
  1984年   12篇
  1983年   13篇
  1981年   16篇
  1980年   12篇
  1979年   7篇
  1978年   12篇
  1977年   8篇
  1976年   13篇
  1975年   8篇
  1974年   6篇
  1973年   10篇
  1972年   6篇
  1960年   4篇
排序方式: 共有940条查询结果,搜索用时 0 毫秒
751.
The USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G were investigated by different analytical techniques. All these materials have a geological (basaltic) matrix and are therefore useful in igneous geochemistry as matrix-matched reference materials for microanalytical techniques. The new GS glasses have trace elements in groups at concentration levels of about < 0.01, 5, 50 and 500 μg g-1. Their major element compositions have been determined by EPMA, and trace elements have been analysed by LA-ICP-MS and two isotope dilution techniques using TIMS and ICP-MS. EPMA and LA-ICP-MS analyses indicated that the USGS reference glasses are homogeneous at the μm to mm scale with respect to major (variations < 1-2%) and most trace elements (variations 1-4%). Trace element data obtained from the different analytical techniques agreed within an uncertainty of 1-5%, indicating that between method results are comparable. Therefore, the preliminary working values for the four USGS GS glasses calculated from these data have a low level of uncertainty.  相似文献   
752.
The 182Hf-182W isotopic systematics of Ca-Al-rich inclusions (CAIs), metal-rich chondrites, and iron meteorites were investigated to constrain the relative timing of accretion of their parent asteroids. A regression of the Hf-W data for two bulk CAIs, various fragments of a single CAI, and carbonaceous chondrites constrains the 182Hf/180Hf and εW at the time of CAI formation to (1.07 ± 0.10) × 10−4 and −3.47 ± 0.20, respectively. All magmatic iron meteorites examined here have initial εW values that are similar to or slightly lower than the initial value of CAIs. These low εW values may in part reflect 182W-burnout caused by the prolonged cosmic ray exposure of iron meteorites, but this effect is estimated to be less than ∼0.3 ε units for an exposure age of 600 Ma. The W isotope data, after correction for cosmic ray induced effects, indicate that core formation in the parent asteroids of the magmatic iron meteorites occurred less than ∼1.5 Myr after formation of CAIs. The nonmagmatic IAB-IIICD irons and the metal-rich CB chondrites have more radiogenic W isotope compositions, indicating formation several Myr after the oldest metal cores had segregated in some asteroids.Chondrule formation ∼2-5 Myr after CAIs, as constrained by published Pb-Pb and Al-Mg ages, postdates core formation in planetesimals, and indicates that chondrites do not represent the precursor material from which asteroids accreted and then differentiated. Chondrites instead derive from asteroids that accreted late, either farther from the Sun than the parent bodies of magmatic iron meteorites or by reaccretion of debris produced during collisional disruption of older asteroids. Alternatively, chondrites may represent material from the outermost layers of differentiated asteroids. The early thermal and chemical evolution of asteroids appears to be controlled by the decay of 26Al, which was sufficiently abundant (initial 26Al/27Al >1.4 × 10−5) to rapidly melt early-formed planetesimals but could not raise the temperatures in the late-formed chondrite parent asteroids high enough to cause differentiation. The preservation of the primitive appearance of chondrites thus at least partially reflects their late formation rather than their early and primitive origin.  相似文献   
753.
The application of the SHRIMP U/Pb dating technique to zircon and monazite of different rock types of the Sierras de Córdoba provides an important insight into the metamorphic history of the basement domains. Additional constraints on the Pampean metamorphic episode were gained by Pb/Pb stepwise leaching (PbSL) experiments on two titanite and garnet separates. Results indicate that the metamorphic history recorded by Crd-free gneisses (M2) started in the latest Neoproterozoic/earliest Cambrian (553 and 543 Ma) followed by the M4 metamorphism at ~530 Ma that is documented in the diatexites. Zircon ages of 492 Ma in the San Carlos Massif correlate partly with rather low Th/U ratios (<0.1) suggesting their growth by metamorphic fluids. This age is even younger than the PbSL titanite ages of 506 Ma. It is suggested that the fluid alteration relates to the beginning of the Famatinien metamorphic cycle in the neighbouring Sierra de San Luis and has not affected the titanite ages. The PTt evolution can be correlated with the plate tectonic processes responsible for the formation of the Pampean orogene, i.e., the accretion of the Pampean basement to the Río de La Plata craton (M2) and the later collision of the Western Pampean basement with the Pampean basement.  相似文献   
754.
The aubrites are nearly monomineralic enstatite pyroxenites, consisting mostly of nearly FeO-free enstatite, with minor albitic plagioclase, nearly FeO-free diopside and forsterite, metallic Fe,Ni, troilite, and a host of rare accessory minerals, many unknown from Earth, that formed under highly reducing conditions. As a result, many of the normally lithophile elements such as Ti, Cr, Mn, Na, etc. behave partly as chalcophiles (i.e., occur in sulfides), and Si is partly siderophile and occurs in metallic Fe,Ni. Aubrites must therefore have formed in a very unique part of the solar nebula, possibly within 1 AU of the Sun. While of the 27 aubrites, 15 are fragmental breccias, 6 are regolith breccias, and 6 are described as non-brecciated, their ingredients are clearly of igneous origin and formed by melting and fractional crystallization, possibly of a magma ocean. This is indicated by the occurrence of a variety of lithic clasts of igneous origin, and by the REE and other trace element distributions. Their highly reduced nature and their oxygen isotopic compositions suggest close kinship to the enstatite chondrites. However, they did not form from known EH or EL chondrites on their parent bodies. Rather, they formed from enstatite chondrite-like material on at least two separate parent bodies, the Shallowater parent body and, for all other aubrites, on the aubrite parent body. Visible and near-infrared reflectance spetra of asteroids suggest that the aubrite parent bodies may be asteroids of the E-type and perhaps the E(II) sub-class, such as 3103 Eger and 2867 Steins (the target of the Rosetta Mission). If aubrites formed by the melting and fractional crystallization of enstatite chondrite-like parent lithologies, which should have contained ~10 vol% plagioclase, then meteorites of enstatite-plagioclase basaltic composition should exist, which is not the case. These early basaltic melts may have been removed from the aubrite parent body by explosive pyroclastic volcanism, and these small pyroclasts would have been destroyed in space long ago. Age dates suggest that the aubrites formed very early in the history of the solar system, within a few Ma of CAI formation, and that the heat sources for heating and melting of their parent bodies were, most likely, short-lived radionuclides such as 26Al and, perhaps, 60Fe. Finally, attention has been drawn to the surface composition of Mercury of low bulk FeO and of nearly FeO-free enstatite, perhaps with plagioclase, diopside and sulfide. While known aubrites clearly did not originate from Mercury, recent calculations suggest that several percent of high-speed ejecta from Mercury reach Earth. This is only factors of 2–3 less than typical launches from Mars and, since there are now 53 Martian meteorites in our collections, meteoriticists should be alert to the potential discovery of a genuine meteorite from Mercury which, superficially, should resemble aubrites. However, recent results from the Neutron Spectrometer of the Messenger Flyby of Mercury have been interpreted to suggest that the planet’s surface may, in fact, contain abundant Fe–Ti-oxides and, if true, a meteorite from Mercury should not resemble any currently known meteorite type.  相似文献   
755.
This collection of articles represents the fourth in a series of reviews in which authors have aimed at capturing the key advances in a range of analytical fields ( Hergt et al. 2005, 2006, 2008 ). The publication period under review is 2008–2009 and the intention here is to provide readers with a summary of the most influential developments published during this period, across a broad range of topics appropriate to the Earth and environmental sciences. Most authors comment on the ways in which the emphases of research in their specific fields of examination have changed over time. All note an increase in rigour and focus on data quality. Whether advances have taken place in instrumentation, sample manipulation or data deconvolution, there are a large number of dedicated scientists out there contributing to the high quality of geochemical data employed in geological and environmental research.  相似文献   
756.
Stirred flow-through experiments were conducted for the first time with planktonic biogenic silica (BSi). We investigated the dissolution kinetics of uncleaned and chemically cleaned BSi collected in ocean surface water, sediment traps, and sediments from the Norwegian Sea, the Southern Ocean, and the Arabian Sea. The solubility at 2°C is rather constant (1000 to 1200 μM). The dissolution rates are, however, highly variable, declining with water depth, and phytoplankton reactivity is two to three orders of magnitude higher than pure siliceous oozes. The reactivity decrease correlates well with an increase in the integrated peak intensity ratios of Si-O-Si/Si-OH measured by Fourier transform infrared (FTIR) spectroscopy. The removal of organic or inorganic coatings enhance the reactivity by at least an order of magnitude. Atomic Al/Si ratios of 0.03 to 0.08 in sedimentary diatom frustules decrease significantly to 0.02 as a result of removal of inorganic coatings and detritals present. Near equilibrium, the dissolution rates exhibit a linear dependence on the degree of undersaturation. At higher degrees of undersaturation—that is, at low concentrations of dissolved silica—the dissolution rates of uncleaned samples define a nonlinear trend.The nonlinear kinetics imply that the dissolution of natural BSi is strongly accelerated in silica-depleted surface waters. The FTIR results suggest that internal condensation reactions reduce the amount of surface reaction sites and are partly responsible for the reactivity decrease with depth. The high content of Al in sedimentary BSi is likely caused by precipitation of dissolved silica with Al dissolved from minerals in sediment. Nonbiogenic silica as coatings or detritals are partly responsible for the solubility and reactivity decrease of BSi in sediments. One order of magnitude different rate constants measured in Norwegian Sea and Southern Ocean sediment trap material support the so-called opal paradox—that is, high BSi accumulation rates in sediments in spite of low BSi production rates in surface waters of the Southern Ocean.  相似文献   
757.
Sam  Anu Susan  Kumar  Ranjit  Kächele  Harald  Müller  Klaus 《Natural Hazards》2017,88(2):1133-1153
Natural Hazards - Flooding constitutes the most predominant natural disaster in India. The degree and causes of vulnerability to flood risk vary by society, geographical region and over time. The...  相似文献   
758.
Dendrochronological analysis of fossil wood from Two Creeks, Wisconsin, reveals that the Two Creekan Intetstade lasted at least 252 yr. The sites crossdated by tree rings cover an area of about 970 km2. AMS determinations from the beginning and end of the chronology open a 14 C time window for the episode from 12,050 to 11,750 yr B.P. The interval is contemporaneous with the Older Dryas in northern Europe. The development of a forest covering at least 970 km2 on the western shore of Lake Michigan indicates a water level about as low as in modern times. Glacier retreat must have opened drainage channels either through the Straits of Mackinac or via the Indian River Plateau into the eastern lakes. The beginning of the tree-ring chronology coincides with the peak of meltwater pulse 1A at 12,000 yr B.P. Increased amounts of meltwater seem to have disturbed the heat exchange between the waters and the atmosphere in the North Atlantic off the Gulf of St. Lawrence or affected the δ18O-ratio of the evaporation, causing the climatic or isotopic reversal of the Older Dryas in Greenland and northern Europe.  相似文献   
759.
Analysis of extended plutons in the Coast Range of North Chile between 25°30′ and 26°35′ led to the recognition of a complex magmatic and structural evolution from the Upper Paleozoic to the Tertiary. The ascension of the intrusive bodies is dictated by deep-seated block tectonics. Generally the chemistry changes from S-type magmas in the Paleozoic to I-type magmas in the Mesozoic and Cainozoic. This is accompanied by a change in the structural geology of the continental margin which we present in six hypothetic phases (Devonian-Tertiary). We are only at the beginning of an encompassing synthesis of the genesis of the Andean orogen.  相似文献   
760.
Temperature-resolved analyses of volatiles from Mid-Ocean-Ridge-Basalt (MORB) and vitreous basaltic rims were carried out to investigate the total volatile contents of basaltic melts and the influence of magma contamination on the degassing behaviour of volcanic rocks.With respect to the sources of methane evolution from the MORB the investigations are taken into consideration, the hydrocarbon (HC) release especially from the melt.The current paper presents data for H2O, CO2, SO2, He, H2, HF, HCl, CO, N2, O2, and HC degassing profiles of samples from the MORB sampling cruise 02.10.1983-11.11.1983 with FS Sonne 28 during the GEMINO-1 project near the Carlsberg Ridge (CR) and the Mid-Indian-Ocean-Ridge (MIOR).It aims to estimate the magnitude and nature of source magma volatiles and contamination (crustal material, seawater, atmospheric gases).The degassing of H2O, CO2, HCs as well as sulphur and chlorine species, or O2 from vitreous specimens shows characteristic differences associated with sample position with respect to the lava surface.From the water release by bubbling and diffusion above 700 °C it must be concluded that any assimilation of sea water in vitreous rim is very low. The water content in the vitreous rim is about 0.1-0.2 wt%. The low interaction of melt with sea water is supported by the missing of a significant release of chlorine species during the heat treatment of the sample up to 1450 °C.Mixed H2O/CO2 bubbles escape between 700 and 800 °C from the vitreous rim. The CO2 release in the temperature range of 1060-1170 °C from the basalt and the vitreous rim is interpreted as an indication for the primary carbon-dioxide content in the melt.Above 1100 °C CO2 and SO2 are evolved by both diffusion and small bubbles. The quantities of CO2 in the vitreous rim and the basalt are similar (between 0.05 and 0.15 wt%), whereas the quantities of SO2 escaping both from the vitreous rim and the crystalline basalt are between 0.013 and 0.024 wt%.Simultaneous with the CO2 release by bubbling, HC species, especially CH fragments, were observed. The fact that the temperature of release maxima are above 1050 °C in both the vitreous rim and in the basalt is an indication for a geogenetic origin of HCs, e.g. methane.A low temperature of release for methane, which is consistent with biogenetic HC, was observed from the gas-release profiles of the basalts only. The maxima of the low-temperature gas releases are between 80 and 200 °C with a high correlation between the fragments m/z 13 and m/z 15. This correlation is a significant indication for a methane release.The oxygen release profiles of vitreous and crystalline basalts give significant indications for oxygen fugacity below the (QMF) of basaltic magma.Secondary minerals, generated by alteration of basaltic rocks, can be characterized by gas release profiles (GRPs) due to their decomposition in the temperature range below 800 °C. Only in the basalt were there observed indications of alteration processes. Small traces of carbonates (<0.0001 wt%) were detected by the gas release during the decomposition.Processes of degassing at temperatures higher than 800 °C are correlated to volatiles in the melt and to fluid inclusions of the minerals. There are no obvious correlations in the degassing characteristics between H2O, CO2 and SO2. The different maxima of the degassing velocity, especially of CO2, and SO2, are indications of the different bonding forces of the site occupancy of the volatiles in the melt and in the glass. A micelle model for bonding sites in the basaltic glass for dissolved volatiles is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号