首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   6篇
  国内免费   1篇
测绘学   1篇
大气科学   7篇
地球物理   59篇
地质学   50篇
海洋学   35篇
天文学   35篇
自然地理   20篇
  2022年   2篇
  2020年   1篇
  2018年   6篇
  2017年   5篇
  2016年   8篇
  2015年   5篇
  2014年   5篇
  2013年   4篇
  2012年   1篇
  2011年   5篇
  2010年   6篇
  2009年   6篇
  2008年   6篇
  2007年   3篇
  2006年   5篇
  2005年   5篇
  2004年   10篇
  2003年   11篇
  2002年   7篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   6篇
  1997年   7篇
  1996年   3篇
  1995年   7篇
  1994年   6篇
  1993年   7篇
  1992年   6篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   5篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   7篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1967年   1篇
排序方式: 共有207条查询结果,搜索用时 15 毫秒
111.
Recent understandings of planetary accretion have suggested that accumulation of a small number of large planetesimals dominates intermediate to final growth stages of the terrestrial planets, with impact velocity high enough to induce extensive melting of the planetesimal and target materials, resulting in formation of a large molten region in which gravitational segregation of silicate and metal, that is, core formation proceeds. In case of homogeneous accretion, volatiles contained in each planetesimal are likely subjected to partitioning among gas, silicate melt, and molten metallic iron at significantly high temperatures and pressures in such a massive molten region. Each phase would subsequently form the proto-atmosphere, -mantle, or-core, respectively. Such chemical reprocessing of H and C associated with core formation, which is followed by both degassing from mantle and atmospheric escape, may result in a diverse range of H2O/CO2 in planetary surface environments, which mainly depends on the H and C content relative to metallic iron in planetary building stones. This may explain inferred difference in volatile distribution between the Earth's (relatively H2O-rich, CO2-poor) and the martian (H2O-poor, CO2-rich) surface environments. Such volatile redistribution may be systematically described by using the retentivity of H2O, ξ, defined as follows: ξ = 1 − ([CO]0 + 2[CH4]0 + 2[C(gr)]0)/[H2O]0, where [i]0 represents mol number of species i partitioned into non-metallic phases, that is, gas and silicate melt in impact-induced molten region. When ξ > 0.5, relatively H2O-rich and CO2-poor surface environment may eventually evolve, although a small portion of H2O partitioned into the NON=metallic phases are possibly consumed by subsequent chemical reactions with reduced C-species with producing CO2 and H2. When ξ< 0.5, on the contrary, H2O consumption by the above reactions and selective loss of H2 to space may result in relative H2O-depleted and CO2-rich surface environment. Given the building stone composition by the two-component model by Ringwood (1977) and Wänke (1981), ξ is found to decrease with increasing the mixing fraction of the volatile-rich component: ξ > 0.5 for the mixing fraction smaller than about 15–20% and ξ < 0 for the mixing fraction larger than about 20–30%. This is not significantly dependent on temperature and pressure in molten region and H/C ratio in the building stone. The estimated mixing fraction of the volatile-rich component, about 10% for the Earth and 35% for Mars, is consistent with the observed difference in volatile distribution between the surfaces of both planets.  相似文献   
112.
113.
An effective stress method is presented for the analysis of liquefaction of ground including soil-structure interaction, based on an explicit-implicit finite element method. A simple constitutive model is developed to be incorporated in the effective stress method. The constitutive model consists of the Ramberg-Osgood model extended to two-dimensional problems and a new dilatancy model. The effectiveness of the constitutive model is examined with results of a simple shear test. Besides, the effective stress method is verified by comparing its numerical results with results of a shaking table test. It is found that the present method can simulate well the response of a saturated dense sand-structure system. The difference of the response computed by the effective stress method and the total stress method is discussed. It is found that the total stress method can simulate the response of the saturated sand within an accumulating excess pore water pressure of less than 70 per cent of the initial overburden stress.  相似文献   
114.
This paper presents the results of a detailed survey combining Seabeam mapping, gravity and geomagnetic measurements as well as single-channel seismic reflection observations in the Japan Trench and the juncture with the Kuril Trench during the French-Japanese Kaiko project (northern sector of the Leg 3) on the R/V “Jean Charcot”. The main data acquired during the cruise, such as the Seabeam maps, magnetic anomalies pattern, and preliminary interpretations are discussed. These new data cover an area of 18,000 km2 and provide for the first time a detailed three-dimensional image of the Japan Trench. Combined with the previous results, the data indicate new structural interpretations. A comparative study of Seabeam morphology, single-channel and reprocessed multichannel records lead to the conclusion that along the northern Japan Trench there is little evidence of accretion but, instead, a tectonic erosion of the overriding plate. The tectonic pattern on the oceanic side of the trench is controlled by the creation of new normal faults parallel to the Japan Trench axis, which is a direct consequence of the downward flexure of the Pacific plate. In addition to these new faults, ancient normal faults trending parallel to the N65° oceanic magnetic anomalies and oblique to the Japan trench axis are reactivated, so that two directions of normal faulting are observed seaward of the Japan Trench. Only one direction of faulting is observed seaward of the Kuril Trench because of the parallelism between the trench axis and the magnetic anomalies. The convergent front of the Kuril Trench is offset left-laterally by 20 km relative to those of the Japan Trench. This transform fault and the lower slope of the southernmost Kuril Trench are represented by very steep scarps more than 2 km high. Slightly south of the juncture, the Erimo Seamount riding on the Pacific plate, is now entering the subduction zone. It has been preceded by at least another seamount as revealed by magnetic anomalies across the landward slope of the trench. Deeper future studies will be necessary to discriminate between the two following hypothesis about the origin of the curvature between both trenches: Is it due to the collision of an already subducted chain of seamounts? or does it correspond to one of the failure lines of the America/Eurasia plate boundary?  相似文献   
115.
The parameterm in Ishimoto-Iida's relation was investigated for acoustic emissions (AEs) occurring in rock samples under uniaxial compression. In the experiment, we found: 1) The large AEs are counted without serious error but the number of small AEs is systematically underestimated at high AE rates, 2) the frequency distribution of maximum AE amplitudes becomes nonlinear in logarithmic scale with increasing AE rate, and 3) there exists a strong negative correlation betweenm-value and AE rate. The miscount of small AEs was interpreted as due to overlap of the large and small AEs. We call the miscount masking effect. A statistical analysis based on the masking effect showed that them-value decreases more effectively as the AE rate increases, and thus the masking effect is a possible origin both for the nonlinear frequency distribution of maximum AE amplitudes and for the negative correlation ofm-value with AE rate. We emphasize that one should be careful of the masking effect to examine correctly the change, ofm-value. In order to eliminate the masking effect, AEs should be measured by a measurement system with low sensitivity. Even if the masking effect is eliminated, them-value decreases before the main fracture of a rock sample. Them-value is a key parameter to predict the main fracture.  相似文献   
116.
117.
We conducted electrical conductivity measurements perpendicular and parallel to mineral foliation in dry gneiss at up to 1000 K and a constant pressure of 1 GPa. The analyzed gneisses were obtained from the Higo metamorphic belt, Kyushu, Japan. As the metamorphic conditions of these rocks have been well determined by previous studies, we were able to select samples that were representative of the middle to lower crust. Prior to the conductivity measurements, the samples were maintained at the maximum temperature for a long period, until the electrical conductivity had stabilized. Our experiment results reveal linear and reproducible conductivity data between temperatures of 600 and 1000 K. Conductivity measured perpendicular and parallel to foliation differ by an order of magnitude over the same temperature window. A plausible explanation for this discrepancy in conductivity is the contrasting configuration of minerals in the two sample orientations, as observed by backscattered electron image (BEI) and electron probe microanalysis (EPMA). We evaluated the conductivity and computed activation energy for each of the samples and compared the results with those of previous studies; our results are consistent with the conductivity values reported for other types of rocks. We also compared the experiment results with data derived from electromagnetic (EM) soundings. Electrical conductivity measurements undertaken perpendicular to foliation can account for the subsurface conductivity structure beneath central Kyushu, Japan.  相似文献   
118.
A software prototype of a simulation service software environment, called DOSE (distributed object‐based software environment), is developed to realize the integrated simulation of an urban system under the risk of urban‐scale hazards such as earthquakes. DOSE infrastructure is built on three basic building blocks, namely: modularity, scalability, and interoperability. In this paper, the application of DOSE to real‐world urban systems is described in order to provide an evidence for DOSE modularity and scalability. An overview of DOSE is presented and then followed by a beverage application to simulate earthquake hazard in an urban system. The urban system is developed for the city of Kobe (Kobe district) with dimensions of 700 × 500 (m) and Bunkyo ward (Tokyo district) with dimensions of 800 × 600 (m) where DOSE simulation participants are identified for each district. The effectiveness of data exchange among different participants through a distributed service exchange network is described as an evidence for DOSE modularity that facilitates the integration process. On the other hand, the effectiveness of processing time when applying the simulation to different urban system sizes and/or using different third‐party applications is described as an evidence for DOSE scalability. The details of the underlying infrastructure of DOSE are beyond the scope of this paper and are presented in an accompanying paper work. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
119.
In this paper, a distributed object‐based software environment (DOSE) has been developed to facilitate the integrated simulation of an urban system under the risk of urban‐scale hazards such as earthquakes. It is understood that individual simulation participants perform their simulation services in separate environments, bartering service exchange relationships to get what they need to resolve their part of the problem. This is the communication gap between the scientists on one side and the end users who need to understand knowledge and employ it on the other side. The authors envision a distributed simulation service software environment running in parallel with the activities of simulation participants. DOSE has lent itself to integrate interdisciplinary participants through an infrastructure that has three basic building blocks, namely: modularity, scalability, and interoperability. The modular, object‐based, design of DOSE architecture is described in terms of key functionalities of four distinct layers, namely: resource, core, domain, and interface layers. DOSE scalability in terms of urban system size and participant third‐party application complexity is enabled through the interface layer. A message passing model is developed using the Message Passing Interface standard and a control room is provided to schedule the interaction/communication among model processes. DOSE interoperability with the vulnerability analysis third‐party applications is enabled through the Industry Foundation Classes (IFC) standard. An adopted analogy between DOSE and construction industry is employed to provide interpretation and implementation for DOSE interoperability. While interfacing IFC object model to solve DOSE interoperability questions, an extension model for the structural view of IFC is proposed and accepted by the International Alliance for Interoperability. The DOSE application for real‐world urban systems is beyond the scope of this paper and is presented in an accompanying paper work. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号