首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   11篇
  国内免费   4篇
测绘学   2篇
大气科学   7篇
地球物理   23篇
地质学   33篇
海洋学   11篇
天文学   11篇
综合类   2篇
自然地理   5篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   5篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2016年   6篇
  2015年   5篇
  2014年   6篇
  2013年   5篇
  2012年   4篇
  2011年   12篇
  2010年   5篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
  1999年   3篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1982年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
11.
We examined hepatic EROD activity, as an indicator of CYP1A induction, in Barrow’s goldeneyes captured in areas oiled during the 1989 Exxon Valdez spill and those from nearby unoiled areas. We found that average EROD activity differed between areas during 2005, although the magnitude of the difference was reduced relative to a previous study from 1996/1997, and we found that areas did not differ by 2009. Similarly, we found that the proportion of individuals captured from oiled areas with elevated EROD activity (?2 times unoiled average) declined from 41% in winter 1996/1997 to 10% in 2005 and 15% in 2009. This work adds to a body of literature describing the timelines over which vertebrates were exposed to residual Exxon Valdez oil and indicates that, for Barrow’s goldeneyes in Prince William Sound, exposure persisted for many years with evidence of substantially reduced exposure by 2 decades after the spill.  相似文献   
12.
Terrestrial ecosystems are dominated by vascular plants that form a mosaic of hydraulic conduits to water movement from the soil to the atmosphere. Together with canopy leaf area, canopy stomatal conductance regulates plant water use and thereby photosynthesis and growth. Although stomatal conductance is coordinated with plant hydraulic conductance, governing relationships across species has not yet been formulated at a practical level that can be employed in large-scale models. Here, combinations of published conductance measurements obtained with several methodologies across boreal to tropical climates were used to explore relationships between canopy conductance rates and hydraulic constraints. A parsimonious hydraulic model requiring sapwood-to-leaf area ratio and canopy height generated acceptable agreement with measurements across a range of biomes (r2=0.75)(r2=0.75). The results suggest that, at long time scales, the functional convergence among ecosystems in the relationship between water-use and hydraulic architecture eclipses inter-specific variation in physiology and anatomy of the transport system. Prognostic applicability of this model requires independent knowledge of sapwood-to-leaf area. In this study, we did not find a strong relationship between sapwood-to-leaf area and physical or climatic variables that are readily determinable at coarse scales, though the results suggest that climate may have a mediating influence on the relationship between sapwood-to-leaf area and height. Within temperate forests, canopy height alone explained a large amount of the variance in reference canopy conductance (r2=0.68)(r2=0.68) and this relationship may be more immediately applicable in the terrestrial ecosystem models.  相似文献   
13.
Contaminant rebound and low contaminant removal are reported more frequently with in situ chemical oxidation than other in situ technologies. Although there are multiple causes for these results, a critical analysis indicates that low oxidant volume delivery is a key issue. The volume of oxidant injected is critical and porosity of the aquifer matrix can be used to estimate the pore volume. The total porosity (qT) is the volume of voids relative to the total volume of aquifer material. The mobile porosity (qM) is the fraction of voids that readily contributes to fluid displacement, and is less than qT leading to smaller estimates of oxidant volume. Injecting low‐oxidant volume may result in inadequate oxidant distribution and postinjection dispersal within the radius of influence, insufficient oxidant contact and oxidant loading, and incomplete treatment; whereas, greater oxidant volume achieves a greater oxidant footprint and may involve risk that the injected oxidant may migrate into nontarget areas and displacement of contaminated groundwater. Design guidelines and recommendations are provided that could help achieve more effective technology deployment, reduce the role of heterogeneities in the subsurface, and result in greater probability the oxidant is delivered to the targeted treatment zone.  相似文献   
14.
Water quality and criculation in Florida Bay (a shallow, subtropical estuary in south Florida) are highly dependent upon the development and evolution of carbonate mud banks distributed throughout the Bay. Predicting the effect of natural and anthropogenic perturbations on carbonate sedimentation requires an understanding of annual, seasonal, and daily variations in the biogenic and inorganic processes affecting carbonate sediment precipitation and dissolution. In this study, net calcification rates were measured over diurnal cycles on 27 d during summer and winter from 1999 to 2003 on mud banks and four representative substrate types located within basins between mud banks. Substrate types that were measured in basins include seagrass beds of sparse and intermediate densityThalassia sp., mud bottom, and hard bottom communities. Changes in total alkalinity were used as a proxy for calcification and dissolution. On 22 d (81%), diurnal variation in rates of net calcification was observed. The highest rates of net carbonate sediment production (or lowest rates of net dissolution) generally occurred during daylight hours and ranged from 2.900 to −0.410 g CaCO3 m−2d−1. The lowest rates of carbonate sediment production (or net sediment dissolution) occurred at night and ranged from 0.210 to −1.900 g CaCO3 m−2 night−1. During typical diurnal cycles, dissolution during the night consumed an average of 29% of sediment produced during the day on banks and 68% of sediment produced during the day in basins. Net sediment dissolution also occurred during daylight, but only when there was total cloud cover, high turbidity, or hypersalinity. Diurnal variation in calcification and dissolution in surface waters and surface sediments of Florida Bay is linked to cycling of carbon dioxide through photosynthesis and respiration. Estimation of long-term sediment accumulation rates from diurnal rates of carbonate sediment production measured in this study indicates an overall average accumulation rate for Florida Bay of 8.7 cm 1000 yr−1 and suggests that sediment dissolution plays a more important role than sediment transport in loss of sediment from Florida Bay.  相似文献   
15.
Grazing by small epifauna on live seagrass leaves was formerly viewed as unimportant in controlling plant biomass and growth, instead researchers focused on the indirect benefits of small invertebrates that crop algal competitors. Recent evidence shows that the emerald nerite Smaragdia viridis preferentially ingests seagrass leaf tissue. In contrast, the button snail Modulus modulus feeds on epiphytes and periphyton coating the leaves. We conducted laboratory microcosm and field experiments to investigate how the different feeding preferences of these seagrass-associated snails affect turtlegrass Thalassia testudinum primary production. Data revealed that after 24 h S. viridis reduced foliar biomass (25%) and chlorophyll (30%) and injured the equivalent of 50% of daily seagrass growth per shoot. Conversely, M. modulus did not affect these variables. Our results emphasize that in subtropical seagrass communities not all small epifauna browse off leaf surfaces and some can have important direct negative impacts on their seagrass host.  相似文献   
16.
Floods have profound impacts on populations worldwide in terms of both loss of life and property. A global inventory of floods is an important tool for quantifying the spatial and temporal distribution of floods and for evaluating global flood prediction models. Several global hazard inventories currently exist; however, their utility for spatiotemporal analysis of global floods is limited. The existing flood catalogs either fail to record the geospatial area over which the flood impacted or restrict the types of flood events included in the database according to a set of criteria, limiting the scope of the inventory. To improve upon existing databases, and make it more comprehensive, we have compiled a digitized Global Flood Inventory (GFI) for the period 1998–2008 which also geo-references each flood event by latitude and longitude. This technical report presents the methodology used to compile the GFI and preliminary findings on the spatial and temporal distributions of the flooding events that are contained in the inventory.  相似文献   
17.
水体扰动对多种赤潮藻生长的影响   总被引:4,自引:0,他引:4  
水体扰动是海洋环境的一个重要特征.扰动通过对藻细胞周围的营养盐边界层厚度的影响,进而影响藻细胞的生长.在其他环境因子统一的条件下,通过室内实验研究扰动条件为主要影响因素对藻类生长的影响.研究结果发现扰动对中肋骨条藻、具齿原甲藻等10个藻种生长存在不同影响,实验数据显示,100r·min-1扰动对新月菱形藻Nitzschia closterium,中肋骨条藻Skeletonema costatum、具齿原甲藻Prorocentrum dentatum、针胞藻Fibrocapsa japonica、棕囊藻Phaeocystis spp.、定鞭金藻Prymnesium patelliferium有显著作用(P<0.05),对赤潮异弯藻Heterosigma akashiwo、亚心形扁藻Platymonas subcordiformis、青岛大扁藻Platymonas helgolandica var Tsing-taoensis、塔胞藻Pyramimonas sp.、Pyramidomonas作用不明显(P>0.05).扰动促进了棕囊藻和定鞭金藻的生长,使之达到最大生物量,并延长了藻细胞的生长时间;同时100r·min-1扰动抑制了新月菱形藻,中肋骨条藻、具齿原甲藻、针胞藻的生长.这些不同的藻类对水体扰动有不同生长反应,结果表明水体扰动是藻类种间竞争的的选择推动力之一.  相似文献   
18.
Submarine groundwater discharge (SGD) was quantified at select sites in San Francisco Bay (SFB) from radium (223Ra and 224Ra) and radon (222Rn) activities measured in groundwater and surface water using simple mass balance box models. Based on these models, discharge rates in South and Central Bays were 0.3?C7.4?m3?day?1?m?1. Although SGD fluxes at the two regions (Central and South Bays) of SFB were of the same order of magnitude, the dissolved inorganic nitrogen (DIN) species associated with SGD were different. In the South Bay, ammonium (NH 4 + ) concentrations in groundwater were three-fold higher than in open bay waters, and NH 4 + was the primary DIN form discharged by SGD. At the Central Bay site, the primary DIN form in groundwater and associated discharge was nitrate (NO 3 ? ). The stable isotope signatures (??15NNO3 and ??18ONO3) of NO 3 ? in the South Bay groundwater and surface waters were both consistent with NO 3 ? derived from NH 4 + that was isotopically enriched in 15N by NH 4 + volatilization. Based on the calculated SGD fluxes and groundwater nutrient concentrations, nutrient fluxes associated with SGD can account for up to 16?% of DIN and 22?% of DIP in South and Central Bays. The form of DIN contributed to surface waters from SGD may impact the ratio of NO 3 ? to NH 4 + available to phytoplankton with implications to bay productivity, phytoplankton species distribution, and nutrient uptake rates. This assessment of nutrient delivery via groundwater discharge in SFB may provide vital information for future bay ecological wellbeing and sensitivity to future environmental stressors.  相似文献   
19.
Successful natural resource management increasingly requires collaboration across boundaries and between diverse stakeholder groups, and trust is a key ingredient of successful collaboration. This study represents an early qualitative empirical attempt to understand how different forms of trust develop, function, and interact in collaborative natural resource management initiatives. We conducted case studies of four landscape-level initiatives in the Collaborative Forest Landscape Restoration Program (CFLRP). Our results suggest that three forms of trust, affinitive, rational, and procedural trust, were all important for successful collaboration, but different forms of trust appeared to function more powerfully during convening, recruitment, retention, and ongoing collaboration of stakeholders, with affinitive trust particularly important for convening, and rational and procedural trust gaining importance for recruiting and retention of members. We discuss the implications of the findings in both theoretical and practical terms.  相似文献   
20.
We measured the effects of a plant invasion (Phragmites australis) on resident fish (Fundulus heteroclitus) in New England salt marshes by assessing diet quality at the food web base and by quantifying the importance of primary producers to secondary production using a recently developed Bayesian mixing model (Stable Isotope Analysis in R, “SIAR”). Spartina alterniflora, the dominant native plant, exhibited significantly greater leaf toughness and higher C/N ratios relative to P. australis. Benthic microalgae and phytoplankton (as suspended particulate matter) exhibited the lowest C/N indicating higher diet quality. We conducted a sensitivity analysis in SIAR by modeling F. heteroclitus at three separate trophic levels (1.5, 2.0, and 2.5) using species-specific discrimination factors to determine basal resource contributions. Overall, the best-fitting models include those that assume F. heteroclitus resides approximately 2.0 trophic levels above primary producers. Using discrimination factors from a range of data sources reported in the literature, our analyses revealed that consumers rely less on benthic microalgae and phytoplankton in restricted marshes (7–23 % and 11–44 %, respectively) relative to reference marshes (5–34 % and 23–48 %, respectively), resulting in a shift in diet toward invasive plant consumption (0–27 %). This is likely due to increased P. australis cover and marsh surface shading leading to decreased microalgal biomass, combined with reduced flooding of the marsh surface that favors terrestrial invertebrate assemblages. Restoration decreased the quantity of P. australis in the food web (0–15 %) and increased the importance of microalgae (1–30 %), phytoplankton (19–48 %), and native plants (23–63 %), indicating a shift in ecological recovery toward reference conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号